CS 188: Artificial Intelligence

Optimization and Neural Networks

Reminder: Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

$$
\operatorname{activation}_{w}(x)=\sum_{i} w_{i} \cdot f_{i}(x)=w \cdot f(x)
$$

- If the activation is:
- Positive, output +1
- Negative, output -1

How to get probabilistic decisions?

Activation: $\quad z=w \cdot f(x)$
If $\quad z=w \cdot f(x) \quad$ very positive \rightarrow want probability going to 1
If $\quad z=w \cdot f(x) \quad$ very negative \rightarrow want probability going to 0

Sigmoid function

$$
\phi(z)=\frac{1}{1+e^{-z}}
$$

Best w?

Maximum likelihood estimation:

$$
\max _{w} l l(w)=\max _{w} \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
$$

with:

$$
\begin{aligned}
& P\left(y^{(i)}=+1 \mid x^{(i)} ; w\right)=\frac{1}{1+e^{-w \cdot f\left(x^{(i)}\right)}} \\
& P\left(y^{(i)}=-1 \mid x^{(i)} ; w\right)=1-\frac{1}{1+e^{-w \cdot f\left(x^{(i)}\right)}}
\end{aligned}
$$

= Logistic Regression

Multiclass Logistic Regression

Multi-class linear classification
A weight vector for each class: w_{y}
Score (activation) of a class y : $\quad w_{y} \cdot f(x)$
Prediction w/highest score wins: $y=\arg \max _{y} w_{y} \cdot f(x)$

How to make the scores into probabilities?

$$
z_{1}, z_{2}, z_{3} \rightarrow \frac{e^{z_{1}}}{e^{z_{1}}+e^{z_{2}}+e^{z_{3}}}, \frac{e^{z_{2}}}{e^{z_{1}}+e^{z_{2}}+e^{z_{3}}}, \frac{e^{z_{3}}}{e^{z_{1}}+e^{z_{2}}+e^{z_{3}}}
$$

Best w?

Maximum likelihood estimation:

$$
\begin{gathered}
\max _{w} l l(w)=\max _{w} \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right) \\
P\left(y^{(i)} \mid x^{(i)} ; w\right)=\frac{e^{w_{y}(i) \cdot f\left(x^{(i)}\right)}}{\sum_{y} e^{w_{y} \cdot f\left(x^{(i)}\right)}}
\end{gathered}
$$

with:

This Lecture

Optimization

i.e., how do we solve:

$$
\max _{w} l l(w)=\max _{w} \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
$$

Hill Climbing

- Recall from CSPs lecture: simple, general idea
- Start wherever
- Repeat: move to the best neighboring state
- If no neighbors better than current, quit

- What's particularly tricky when hill-climbing for multiclass logistic regression?
- Optimization over a continuous space
- Infinitely many neighbors!
- How to do this efficiently?

Review: Derivatives and Gradients

- What is the derivative of the function $g(x)=x^{2}+3$?

$$
\frac{d g}{d x}=2 x
$$

- What is the derivative of $g(x)$ at $x=5$?

$$
\left.\frac{d g}{d x}\right|_{x=5}=10
$$

Review: Derivatives and Gradients

- What is the gradient of the function $g(x, y)=x^{2} y$?
- Recall: Gradient is a vector of partial derivatives with respect to each variable

$$
\nabla g=\left[\begin{array}{c}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y}
\end{array}\right]=\left[\begin{array}{c}
2 x y \\
x^{2}
\end{array}\right]
$$

- What is the derivative of $g(x, y)$ at $x=0.5, y=0.5$?

$$
\left.\nabla g\right|_{x=0.5, y=0.5}=\left[\begin{array}{c}
2(0.5)(0.5) \\
\left(0.5^{2}\right)
\end{array}\right]=\left[\begin{array}{c}
0.5 \\
0.25
\end{array}\right]
$$

1-D Optimization

- Could evaluate $g\left(w_{0}+h\right)$ and $g\left(w_{0}-h\right)$
- Then step in best direction
- Or, evaluate derivative: $\quad \frac{\partial g\left(w_{0}\right)}{\partial w}=\lim _{h \rightarrow 0} \frac{g\left(w_{0}+h\right)-g\left(w_{0}-h\right)}{2 h}$
- Tells which direction to step into

2-D Optimization

Gradient Ascent

- Perform update in uphill direction for each coordinate
- The steeper the slope (i.e. the higher the derivative) the bigger the step for that coordinate
- E.g., consider: $\quad g\left(w_{1}, w_{2}\right)$
- Updates:

$$
\begin{aligned}
& w_{1} \leftarrow w_{1}+\alpha * \frac{\partial g}{\partial w_{1}}\left(w_{1}, w_{2}\right) \\
& w_{2} \leftarrow w_{2}+\alpha * \frac{\partial g}{\partial w_{2}}\left(w_{1}, w_{2}\right)
\end{aligned}
$$

- Updates in vector notation:

$$
w \leftarrow w+\alpha * \nabla_{w} g(w)
$$

with: $\nabla_{w} g(w)=\left[\begin{array}{l}\frac{\partial g}{\partial w_{1}}(w) \\ \frac{\partial g}{\partial w_{2}}(w)\end{array}\right] \quad=$ gradient

Gradient Ascent

- Idea:
- Start somewhere
- Repeat: Take a step in the gradient direction

Gradient Ascent

- Idea:
- Start somewhere
- Repeat: Take a step in the gradient direction

Not guaranteed to find global maximum:

What is the Steepest Direction?*

$$
\max _{\Delta: \Delta_{1}^{2}+\Delta_{2}^{2} \leq \varepsilon} g(w+\Delta)
$$

- First-Order Taylor Expansion:

$$
g(w+\Delta) \approx g(w)+\frac{\partial g}{\partial w_{1}} \Delta_{1}+\frac{\partial g}{\partial w_{2}} \Delta_{2}
$$

- Steepest Descent Direction:

$$
\max _{\Delta: \Delta_{1}^{2}+\Delta_{2}^{2} \leq \varepsilon} g(w)+\frac{\partial g}{\partial w_{1}} \Delta_{1}+\frac{\partial g}{\partial w_{2}} \Delta_{2}
$$

- Recall: $\quad \max _{\Delta:\|\Delta\| \leq \varepsilon} \Delta^{\top} a \quad \rightarrow \quad \Delta=\varepsilon \frac{a}{\|a\|}$
- Hence, solution:

$$
\Delta=\varepsilon \frac{\nabla g}{\|\nabla g\|} \quad \text { Gradient direction = steepest direction! }
$$

$$
\nabla g=\left[\begin{array}{c}
\frac{\partial g}{\partial w_{1}} \\
\frac{\partial g}{\partial w_{2}}
\end{array}\right]
$$

Gradient in n dimensions

$$
\nabla g=\left[\begin{array}{c}
\frac{\partial g}{\partial w_{1}} \\
\frac{\partial g}{\partial w_{2}} \\
\cdots \\
\frac{\partial g}{\partial w_{n}}
\end{array}\right]
$$

Optimization Procedure: Gradient Ascent

$$
\begin{aligned}
& \text { Init } w \\
& \text { for iter }=1,2, \ldots \\
& \qquad w \leftarrow w+\alpha \cdot \nabla g(w)
\end{aligned}
$$

- α : learning rate --- tweaking parameter that needs to be chosen carefully
- How? Try multiple choices
- Crude rule of thumb: update changes w about 0.1 - 1 \%

Learning Rate

Choice of learning rate α is a hyperparameter Example: $\alpha=0.001$ (too small)

Learning Rate

Choice of step size α is a hyperparameter
Example: $\alpha=0.004$ (too large)

Gradient Ascent with Momentum*

- Often use momentum to improve gradient ascent convergence

Gradient Ascent:

$$
\begin{aligned}
& \text { Init } w \\
& \text { for iter }=1,2, \ldots \\
& \quad w \leftarrow w+\alpha \cdot \nabla g(w)
\end{aligned}
$$

Gradient Ascent with momentum:

$$
\begin{aligned}
& \text { Init } w \\
& \text { for iter }=1,2, \ldots \\
& \quad Z \leftarrow \beta \cdot z+\nabla g(w) \\
& \quad w \leftarrow w+\alpha \cdot z
\end{aligned}
$$

- One interpretation: w moves like a particle with mass
- Another: exponential moving average on gradient

Gradient Ascent with Momentum*

Example: $\alpha=0.001$ and $\beta=0.0$

Gradient Ascent with Momentum*

Example: $\alpha=0.001$ and $\beta=0.9$

Batch Gradient Ascent on the Log Likelihood Objective

$$
\max _{w} l l(w)=\max _{w} \underbrace{\sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)}_{g(w)}
$$

$$
\begin{aligned}
& \text { - init } w \\
& \quad \text { for iter }=1,2, \ldots \\
& \quad w \leftarrow w+\alpha * \sum_{i} \nabla \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
\end{aligned}
$$

Stochastic Gradient Ascent on the Log Likelihood Objective

$$
\max _{w} l l(w)=\max _{w} \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
$$

Observation: once gradient on one training example has been computed, might as well incorporate before computing next one

```
- init w
- for iter = 1, 2,
    - pick random j
        w\leftarroww+\alpha*\nabla\operatorname{log}P(\mp@subsup{y}{}{(j)}|\mp@subsup{x}{}{(j)};w)
```


Mini-Batch Gradient Ascent on the Log Likelihood Objective

$$
\max _{w} l l(w)=\max _{w} \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
$$

Observation: gradient over small set of training examples (=mini-batch) can be computed in parallel, might as well do that instead of a single one

```
- init w
- for iter = 1, 2,
    - pick random subset of training examples J
        w\leftarroww+\alpha* 涼J}\nabla|\operatorname{log}P(\mp@subsup{y}{}{(j)}|\mp@subsup{x}{}{(j)};w
```


How about computing all the derivatives?

- We'll talk about that once we covered neural networks, which are a generalization of logistic regression

Neural Networks

Manual Feature Design vs. Deep Learning

- What if we could learn the features, too?
- Deep Learning

Review: Perceptron

$$
y= \begin{cases}1 & w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}>0 \\ 0 & \text { otherwise }\end{cases}
$$

Review: Perceptron with Sigmoid Activation

$$
\begin{aligned}
y & =\phi\left(w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}\right) \\
& =\frac{1}{1+e^{-\left(w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}\right)}}
\end{aligned}
$$

2-Layer, 2-Neuron Neural Network

2-Layer, 2-Neuron Neural Network

intermediate output $h_{1}=\phi\left(w_{11} x_{1}+w_{21} x_{2}+w_{31} x_{3}\right)$

$$
=\frac{1}{1+e^{-\left(w_{11} x_{1}+w_{21} x_{2}+w_{31} x_{3}\right)}}
$$

2-Layer, 2-Neuron Neural Network

intermediate output $h_{2}=\phi\left(w_{12} x_{1}+w_{22} x_{2}+w_{32} x_{3}\right)$

$$
=\frac{1}{1+e^{-\left(w_{12} x_{1}+w_{22} x_{2}+w_{32} x_{3}\right)}}
$$

2-Layer, 2-Neuron Neural Network

2-Layer, 2-Neuron Neural Network

$$
\begin{aligned}
y & =\phi\left(w_{1} h_{1}+w_{2} h_{2}\right) \\
& =\phi\left(w_{1} \phi\left(w_{11} x_{1}+w_{21} x_{2}+w_{31} x_{3}\right)+w_{2} \phi\left(w_{12} x_{1}+w_{22} x_{2}+w_{32} x_{3}\right)\right)
\end{aligned}
$$

2-Layer, 2-Neuron Neural Network

$$
\begin{aligned}
y & =\phi\left(w_{1} h_{1}+w_{2} h_{2}\right) \\
& =\phi\left(w_{1} \phi\left(w_{11} x_{1}+w_{21} x_{2}+w_{31} x_{3}\right)+w_{2} \phi\left(w_{12} x_{1}+w_{22} x_{2}+w_{32} x_{3}\right)\right)
\end{aligned}
$$

The same equation, formatted with matrices:

$$
\left.\left.\begin{array}{rl}
& \phi\left(\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{ll}
w_{11} & w_{12} \\
w_{21} & w_{22} \\
w_{31} & w_{32}
\end{array}\right]\right) \\
= & \phi\left(\left[w_{11} x_{1}+w_{21} x_{2}+w_{31} x_{3}\right.\right. \\
= & \left.\left.w_{12} x_{1}+w_{22} x_{2}+w_{32} x_{3}\right]\right) \\
h_{1} & h_{2}
\end{array}\right] \quad \phi\left(\left[\begin{array}{ll}
h_{1} & h_{2}
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]\right)=\phi\left(w_{1} h_{1}+w_{2} h_{2}\right)=y\right]
$$

The same equation, formatted more compactly by introducing variables representing each matrix:

$$
\phi\left(x \times W_{\text {layer } 1}\right)=h \quad \phi\left(h \times W_{\text {layer 2 }}\right)=y
$$

2-Layer, 2-Neuron Neural Network

$$
\phi\left(h \times W_{\text {layer 2 }}\right)=y
$$

Shape (1, 2).
Outputs of layer 1, inputs to layer 2.

Shape $(2,1)$.
Weights to be learned.

Shape (1, 1).
Output of network.

2-Layer, 3-Neuron Neural Network

2-Layer, 3-Neuron Neural Network

$$
\begin{aligned}
& \phi\left(\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{lll}
w_{11} & w_{12} & w_{13} \\
w_{21} & w_{22} & w_{23} \\
w_{31} & w_{32} & w_{33}
\end{array}\right]\right) \\
= & \phi\left(\left[\begin{array}{lll}
w_{11} x_{1}+w_{21} x_{2}+w_{31} x_{3} & w_{12} x_{1}+w_{22} x_{2}+w_{32} x_{3} & w_{13} x_{1}+w_{23} x_{2}+w_{33} x_{3}
\end{array}\right]\right) \\
= & {\left[\begin{array}{lll}
h_{1} & h_{2} & h_{3}
\end{array}\right] }
\end{aligned}
$$

$$
\phi\left(\left[\begin{array}{lll}
h_{1} & h_{2} & h_{3}
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right]\right)=\phi\left(w_{1} h_{1}+w_{2} h_{2}+w_{3} h_{3}\right)=y
$$

2-Layer, 3-Neuron Neural Network

$$
\phi\left(h \times W_{\text {layer 2 }}\right)=y
$$

Generalize: Number of hidden neurons

The hidden layer doesn't necessarily need to have 3 neurons; it could have any arbitrary number n neurons.

Generalize: n number of hidden neurons

The hidden layer doesn't necessarily need to have 3 neurons; it could have any arbitrary number n neurons.

Generalize: Number of input features

The input feature vector doesn't necessarily need to have 3 features; it could have some arbitrary number $\operatorname{dim}(x)$ of features.

Generalize: Number of input features

Shape ($1, \operatorname{dim}(x)$). Input feature vector.

$$
\phi\left(h \times W_{\text {layer 2 }}\right)=y
$$

The input feature vector doesn't necessarily need to have 3 features; it could have some arbitrary number $\operatorname{dim}(x)$ of features.

Generalize: Number of outputs

The output doesn't necessarily need to be just one number; it could be some arbitrary dim(y) length vector.

Generalize: Number of input features

$$
\phi\left(h \times W_{\text {layer 2 }}\right)=y
$$

Generalized 2-Layer Neural Network

Big idea: The shape of a weight matrix is determined by the dimensions of the input and output of that layer.

3-Layer, 3-Neuron Neural Network

3-Layer, 3-Neuron Neural Network

- Layer 1:
- $\quad x$ has shape $(1,3)$. Input vector, 3 -dimensional.
- $W_{\text {layer } 1}$ has shape $(3,3)$. Weights for 3 neurons, each taking in a 3-dimensional input vector.
- $h_{\text {layer } 1}$ has shape (1,3). Outputs of the 3 neurons at this layer.
- Layer 2:
- $h_{\text {layer } 1}$ has shape (1, 3). Outputs of the 3 neurons from the previous layer.
- $W_{\text {layer } 2}$ has shape $(3,3)$. Weights for 3 new neurons, each taking in the 3 previous perceptron outputs.
- $h_{\text {layer } 2}$ has shape $(1,3)$. Outputs of the 3 new neurons at this layer.
- Layer 3:
- $h_{\text {layer } 2}$ has shape $(1,3)$. Outputs from the previous layer.
- $W_{\text {layer } 3}$ has shape $(3,1)$. Weights for 1 final neuron, taking in the 3 previous perceptron outputs.
- y has shape $(1,1)$. Output of the final neuron.

$$
\begin{aligned}
\phi\left(x \times W_{\text {layer } 1}\right) & =h_{\text {layer } 1} \\
\phi\left(h_{\text {layer } 1} \times W_{\text {layer } 2}\right) & =h_{\text {layer } 2} \\
\phi\left(h_{\text {layer } 2} \times W_{\text {layer 3 } 3}\right) & =y
\end{aligned}
$$

Generalized 3-Layer Neural Network

- Layer 1:
- x has shape $(1, \operatorname{dim}(x))$
- $\mathrm{W}_{\text {layer } 1}$ has shape $(\operatorname{dim}(x), \operatorname{dim}(L 1))$
- $h_{\text {layer } 1}$ has shape ($1, \operatorname{dim}(L 1)$)
- Layer 2:
- $h_{\text {layer } 1}$ has shape (1, $\left.\operatorname{dim}(L 1)\right)$
- $\mathrm{W}_{\text {layer } 2}$ has shape ($\left.\operatorname{dim}(L 1), \operatorname{dim}(L 2)\right)$
- $h_{\text {layer 2 }}$ has shape ($1, \operatorname{dim}(L 2)$)
- Layer 3:
- $h_{\text {layer } 2}$ has shape (1, $\operatorname{dim}(L 2)$)
- $\mathrm{W}_{\text {layer } 3}$ has shape $(\operatorname{dim}(L 2), \operatorname{dim}(y))$
- y has shape ($1, \operatorname{dim}(y))$

$$
\begin{aligned}
\phi\left(x \times W_{\text {layer } 1}\right) & =h_{\text {layer } 1} \\
\phi\left(h_{\text {layer } 1} \times W_{\text {layer } 2}\right) & =h_{\text {layer } 2} \\
\phi\left(h_{\text {layer } 2} \times W_{\text {layer } 3}\right) & =y
\end{aligned}
$$

Multi-Layer Neural Network

Multi-Layer Neural Network

- Input to a layer: some $\operatorname{dim}(x)$-dimensional input vector
- Output of a layer: some $\operatorname{dim}(y)$-dimensional output vector
- $\operatorname{dim}(y)$ is the number of neurons in the layer (1 output per neuron)
- Process of converting input to output:
- Multiply the $(1, \operatorname{dim}(x))$ input vector with a $(\operatorname{dim}(x), \operatorname{dim}(y))$ weight vector. The result has shape (1, $\operatorname{dim}(y)$).
- Apply some non-linear function (e.g. sigmoid) to the result. The result still has shape (1, dim(y)).
- Big idea: Chain layers together
- The input could come from a previous layer's output
- The output could be used as the input to the next layer

Deep Neural Network

$$
z_{i}^{(k)}=g\left(\sum_{j} W_{i, j}^{(k-1, k)} z_{j}^{(k-1)}\right)
$$

$$
\mathrm{g}=\text { nonlinear activation function }
$$

Common Activation Functions

Sigmoid Function
Hyperbolic Tangent

$g(z)=\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}$
$g^{\prime}(z)=1-g(z)^{2}$

Rectified Linear Unit (ReLU)

$$
g(z)=\max (0, z)
$$

$g^{\prime}(z)=\left\{\begin{array}{lr}1, & z>0 \\ 0, & \text { otherwise }\end{array}\right.$

Important to use non-linear activation functions

- With non-linear activation ϕ for intermediate output:

$$
\begin{aligned}
y & =\phi\left(w_{1} h_{1}+w_{2} h_{2}\right) \\
& =\phi\left(w_{1} \phi\left(w_{11} x_{1}+w_{21} x_{2}+w_{31} x_{3}\right)+w_{2} \phi\left(w_{12} x_{1}+w_{22} x_{2}+w_{32} x_{3}\right)\right)
\end{aligned}
$$

- Without intermediate activations ϕ :

$$
\begin{aligned}
y & =\phi\left(w_{1}\left(w_{11} x_{1}+w_{21} x_{2}+w_{31} x_{3}\right)+w_{2}\left(w_{12} x_{1}+w_{22} x_{2}+w_{32} x_{3}\right)\right) \\
& =\phi\left(\left(w_{1} w_{11}+w_{2} w_{12}\right) x_{1}+\left(w_{1} w_{21}+w_{2} w_{22}\right) x_{2}+\left(w_{1} w_{31}+w_{2} w_{32}\right) x_{3}\right) \\
& =\phi\left(a x_{1}+b x_{2}+c x_{3}\right) \leftarrow \text { same as not including a hidden layer! }
\end{aligned}
$$

Batch Sizes

Batch Sizes

$$
\begin{aligned}
y_{1} & =\phi\left(w_{1} h_{11}+w_{2} h_{12}\right) \\
& =\phi\left(w_{1} \phi\left(w_{11} x_{11}+w_{21} x_{12}+w_{31} x_{13}\right)+w_{2} \phi\left(w_{12} x_{11}+w_{22} x_{12}+w_{32} x_{13}\right)\right) \\
y_{2} & =\phi\left(w_{1} h_{21}+w_{2} h_{22}\right) \\
& =\phi\left(w_{1} \phi\left(w_{11} x_{21}+w_{21} x_{22}+w_{31} x_{23}\right)+w_{2} \phi\left(w_{12} x_{21}+w_{22} x_{22}+w_{32} x_{23}\right)\right)
\end{aligned}
$$

We're not changing the architecture; we're just running the 2-neuron, 2-layer network twice to classify 2 inputs.

Batch Sizes

$$
\begin{aligned}
y_{1} & =\phi\left(w_{1} h_{11}+w_{2} h_{12}\right) \\
& =\phi\left(w_{1} \phi\left(w_{11} x_{11}+w_{21} x_{12}+w_{31} x_{13}\right)+w_{2} \phi\left(w_{12} x_{11}+w_{22} x_{12}+w_{32} x_{13}\right)\right) \\
y_{2} & =\phi\left(w_{1} h_{21}+w_{2} h_{22}\right) \\
& =\phi\left(w_{1} \phi\left(w_{11} x_{21}+w_{21} x_{22}+w_{31} x_{23}\right)+w_{2} \phi\left(w_{12} x_{21}+w_{22} x_{22}+w_{32} x_{23}\right)\right)
\end{aligned}
$$

Rewriting in matrix form:

$$
\begin{aligned}
& \phi\left(\left[\begin{array}{lll}
x_{11} & x_{21} & x_{31} \\
x_{12} & x_{22} & x_{32}
\end{array}\right]\left[\begin{array}{ll}
w_{11} & w_{12} \\
w_{21} & w_{22} \\
w_{31} & w_{32}
\end{array}\right]\right) \\
& =\phi\left(\left[\begin{array}{ll}
w_{11} x_{11}+w_{21} x_{21}+w_{31} x_{31} & w_{12} x_{11}+w_{22} x_{21}+w_{32} x_{31} \\
w_{11} x_{12}+w_{21} x_{22}+w_{31} x_{32} & w_{12} x_{12}+w_{22} x_{22}+w_{32} x_{32}
\end{array}\right]\right) \\
& =\left[\begin{array}{ll}
h_{11} & h_{21} \\
h_{12} & h_{22}
\end{array}\right] \\
& \phi\left(\left[\begin{array}{ll}
h_{11} & h_{21} \\
h_{12} & h_{22}
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]\right)=\phi\left(\left[\begin{array}{l}
w_{1} h_{11}+w_{2} h_{21} \\
w_{1} h_{12}+w_{2} h_{22}
\end{array}\right]\right)=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
\end{aligned}
$$

Batch Sizes

$$
\phi\left(h \times W_{\text {layer 2 }}\right)=y
$$

Shape (batch, n). \quad Shape $(n, \operatorname{dim}(y))$. Shape $(b a t c h, \operatorname{dim}(y))$. Outputs of layer 1, Weights to be learned. Output of network. inputs to layer 2.

Big idea: We can "stack" inputs together to classify multiple inputs at once. The result is multiple outputs "stacked" together.

Multi-Layer Network, with Batches

- Input to a layer: batch different $\operatorname{dim}(x)$-dimensional input vectors
- Output of a layer: batch different $\operatorname{dim}(y)$-dimensional output vectors
- $\operatorname{dim}(y)$ is the number of neurons in the layer (1 output per neuron)
- Process of converting input to output:
- Multiply the $(b a t c h, \operatorname{dim}(x))$ input matrix with a $(\operatorname{dim}(x), \operatorname{dim}(y))$ weight vector. The result has shape (batch, $\operatorname{dim}(y)$).
- Apply some non-linear function (e.g. sigmoid) to the result. The result still has shape (batch, dim(y)).
- Big idea: Stack inputs/outputs to batch them
- The multiplication by weights and non-linear function will be applied to each row (data point in the batch) separately.

Quiz: Sizes of neural networks

Quiz: Sizes of neural networks

We have a neural network with the matrices drawn.

1. How many layers are in the network? 2
2. How many input dimensions $\operatorname{dim}(x)$? 3

3. How many hidden neurons n ?

2
4. How many output dimensions dim(y)? 1
5. What is the batch size?

4

Next Time: Training Neural Networks \& Applications

