
CS 188: Artificial Intelligence

Optimization and Neural Networks

[These slides were created by Dan Klein, Pieter Abbeel, Anca Dragan for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Reminder: Linear Classifiers

▪ Inputs are feature values
▪ Each feature has a weight
▪ Sum is the activation

▪ If the activation is:
▪ Positive, output +1
▪ Negative, output -1 Σ

f1
f2
f3

w1

w2

w3
>0?

How to get probabilistic decisions?

Activation:
If very positive → want probability going to 1
If very negative → want probability going to 0

Sigmoid function

Best w?

Maximum likelihood estimation:

with:

= Logistic Regression

Multiclass Logistic Regression
Multi-class linear classification

A weight vector for each class:

Score (activation) of a class y:

Prediction w/highest score wins:

How to make the scores into probabilities?

original activations softmax activations

Best w?

Maximum likelihood estimation:

with:

= Multi-Class Logistic Regression

This Lecture

Optimization

i.e., how do we solve:

Hill Climbing

§ Recall from CSPs lecture: simple, general idea
§ Start wherever
§ Repeat: move to the best neighboring state
§ If no neighbors better than current, quit

§ What’s particularly tricky when hill-climbing for multiclass
logistic regression?
• Optimization over a continuous space
• Infinitely many neighbors!
• How to do this efficiently?

Review: Derivatives and Gradients

§ What is the derivative of the function ?

§ What is the derivative of g(x) at x=5?

Review: Derivatives and Gradients

§ What is the gradient of the function ?
§ Recall: Gradient is a vector of partial derivatives with respect to

each variable

§ What is the derivative of g(x, y) at x=0.5, y=0.5?

1-D Optimization

§ Could evaluate and
§ Then step in best direction

§ Or, evaluate derivative:

§ Tells which direction to step into

w

g(w)

w0

g(w0)

g(w0 + h) g(w0 � h)

@g(w0)

@w
= lim

h!0

g(w0 + h)� g(w0 � h)

2h

2-D Optimization

Source: offconvex.org

𝑤!
𝑤"

Gradient Ascent

§ Perform update in uphill direction for each coordinate
§ The steeper the slope (i.e. the higher the derivative) the bigger the step

for that coordinate

§ E.g., consider:

§ Updates:

g(w1, w2)

w2 w2 + ↵ ⇤ @g

@w2
(w1, w2)

w1 w1 + ↵ ⇤ @g

@w1
(w1, w2)

§ Updates in vector notation:

 with:

w w + ↵ ⇤ rwg(w)

rwg(w) =

"
@g
@w1

(w)
@g
@w2

(w)

#

= gradient

§ Idea:
§ Start somewhere
§ Repeat: Take a step in the gradient direction

Gradient Ascent

Figure source: Mathworks

§ Idea:
§ Start somewhere
§ Repeat: Take a step in the gradient direction

Gradient Ascent

Figure source: Mathworks

Not guaranteed to find
global maximum:

What is the Steepest Direction?*

§ First-Order Taylor Expansion:

§ Steepest Descent Direction:

§ Recall: à

§ Hence, solution:

g(w +�) ⇡ g(w) +
@g

@w1
�1 +

@g

@w2
�2

rg =

"
@g
@w1
@g
@w2

#
Gradient direction = steepest direction!

max
�:�2

1+�2
2"

g(w +�)

max
�:�2

1+�2
2"

g(w) +
@g

@w1
�1 +

@g

@w2
�2

� = "
rg

krgk

� = "
a

kak
max

�:k�k"
�>a

Gradient in n dimensions

rg =

2

6664

@g
@w1
@g
@w2

· · ·
@g
@wn

3

7775

Optimization Procedure: Gradient Ascent

▪ ⍺: learning rate --- tweaking parameter that needs to be
chosen carefully

▪ How? Try multiple choices
▪ Crude rule of thumb: update changes 𝑤 about 0.1 – 1 %

Init 𝑤
for iter = 1, 2, …

𝑤 ← 𝑤 + 𝛼 ⋅ ∇𝑔(𝑤)

Choice of learning rate ⍺ is a hyperparameter
Example: ⍺=0.001 (too small)

Learning Rate

Source: https://distill.pub/2017/momentum/

Choice of step size ⍺ is a hyperparameter
Example: ⍺=0.004 (too large)

Learning Rate

Source: https://distill.pub/2017/momentum/

Gradient Ascent with Momentum*

Init 𝑤
for iter = 1, 2, …

𝑧 ← 𝛽 ⋅ 𝑧 + ∇𝑔 𝑤
𝑤 ← 𝑤 + 𝛼 ⋅ 𝑧

▪ Often use momentum to improve gradient ascent convergence

▪ One interpretation: w moves like a particle with mass
▪ Another: exponential moving average on gradient

Init 𝑤
for iter = 1, 2, …

𝑤 ← 𝑤 + 𝛼 ⋅ ∇𝑔(𝑤)

Gradient Ascent: Gradient Ascent with momentum:

Example: ⍺=0.001 and β=0.0

Gradient Ascent with Momentum*

Source: https://distill.pub/2017/momentum/

Example: ⍺=0.001 and β=0.9

Gradient Ascent with Momentum*

Source: https://distill.pub/2017/momentum/

Batch Gradient Ascent on the Log Likelihood Objective

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

g(w)

§ init

§ for iter = 1, 2, …

w

w w + ↵ ⇤
X

i

r logP (y(i)|x(i);w)

Stochastic Gradient Ascent on the Log Likelihood Objective

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

§ init

§ for iter = 1, 2, …
§ pick random j

w

w w + ↵ ⇤ r logP (y(j)|x(j);w)

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

Mini-Batch Gradient Ascent on the Log Likelihood Objective

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

§ init

§ for iter = 1, 2, …
§ pick random subset of training examples J

w

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

w w + ↵ ⇤
X

j2J

r logP (y(j)|x(j);w)

§ We’ll talk about that once we covered neural networks, which
are a generalization of logistic regression

How about computing all the derivatives?

Neural Networks

Manual Feature Design vs. Deep Learning

o Manual feature design requires:
o Domain-specific expertise
o Domain-specific effort

x
(input)

y
(prediction)

f
(features)

Manual
feature

extraction
Machine
learning

o What if we could learn the features, too?
o Deep Learning

Review: Perceptron

S
x1
x2
x3

w1

w2

w3
>0? y

Review: Perceptron with Sigmoid Activation

S
x1
x2
x3

w1

w2

w3
y>0?

2-Layer, 2-Neuron Neural Network

x1

x2

x3

S
w11

w21

w31

>0?

>0?S

w12

w22

w32

S
w1

w2

y

2-Layer, 2-Neuron Neural Network

x1

x2

x3
S

w12

>0?

S
w11

w21

w31

>0?

S
w1

w2

y

intermediate output h1

w22

w32

2-Layer, 2-Neuron Neural Network

x1

x2

x3
S

w12

w22

w32
>0?

S
w11

w21

w31

>0?

S
w1

w2

y

intermediate output h1

intermediate output h2

2-Layer, 2-Neuron Neural Network

x1

x2

x3
S

w12

w22

w32
>0?

S
w11

w21

w31

>0?

S
w1

w2

y

intermediate output h1

intermediate output h2

2-Layer, 2-Neuron Neural Network

x1

x2

x3
S

w12

w22

w32
>0?

S
w11

w21

w31

>0?

S
w1

w2

y

intermediate output h1

intermediate output h2

2-Layer, 2-Neuron Neural Network

The same equation, formatted with matrices:

The same equation, formatted more compactly by introducing variables representing each matrix:

2-Layer, 2-Neuron Neural Network

Shape (1, 3).
Input feature vector.

Shape (3, 2).
Weights to be learned.

Shape (1, 2).
Outputs of layer 1,
inputs to layer 2.

Shape (1, 2).
Outputs of layer 1,

inputs to layer 2.

Shape (2, 1).
Weights to be learned.

Shape (1, 1).
Output of network.

2-Layer, 3-Neuron Neural Network

x1

x2

x3

S
w12

w22

w32
>0?

S
w11

w21

w31

>0?

S

w1

w2
y

S
w13

w23

w33

>0?

w3

2-Layer, 3-Neuron Neural Network

2-Layer, 3-Neuron Neural Network

Shape (1, 3).
Input feature vector.

Shape (3, 3).
Weights to be learned

Shape (1, 3).
Outputs of layer 1,
inputs to layer 2.

Shape (1, 3).
Outputs of layer 1,

inputs to layer 2.

Shape (3, 1).
Weights to be learned.

Shape (1, 1).
Output of network.

Generalize: Number of hidden neurons

S

x1

x2

x3
w1n

w2n

w3n

>0?

S
w12

w22

w32
>0?

S
w11

w21

w31

>0?

S

w1

w2

wn

y

…

The hidden layer doesn’t necessarily need to have 3 neurons; it could have any arbitrary number n neurons.

Generalize: n number of hidden neurons

Shape (1, 3).
Input feature vector.

Shape (3, n).
Weights to be learned

Shape (1, n).
Outputs of layer 1,
inputs to layer 2.

Shape (1, n).
Outputs of layer 1,

inputs to layer 2.

Shape (n, 1).
Weights to be learned.

Shape (1, 1).
Output of network.

The hidden layer doesn’t necessarily need to have 3 neurons; it could have any arbitrary number n neurons.

Generalize: Number of input features

S

x1

x2

x3

w1n

w2n

w3n

>0?

wdim(x)1

S
w11

w21

w31

>0?

S

w1

wn

y

…

…

xdim(x)

wdim(x)n

The input feature vector doesn’t necessarily need to have 3 features; it could have some arbitrary number dim(x) of features.

Generalize: Number of input features

Shape (1, dim(x)).
Input feature vector.

Shape (dim(x), n).
Weights to be learned

Shape (1, n).
Outputs of layer 1,
inputs to layer 2.

Shape (1, n).
Outputs of layer 1,

inputs to layer 2.

Shape (n, 1).
Weights to be learned.

Shape (1, 1).
Output of network.

The input feature vector doesn’t necessarily need to have 3 features; it could have some arbitrary number dim(x) of features.

Generalize: Number of outputs

S

x1

x2

x3

w1n

w2n

w3n

>0?

Wdim(x)1

S
w11

w21

w31

>0?

S y1

…

…

xdim(x)

wdim(x)n

S ydim(y)

…

The output doesn’t necessarily need to be just one number; it could be some arbitrary dim(y) length vector.

Generalize: Number of input features

Shape (1, dim(x)).
Input feature vector.

Shape (dim(x), n).
Weights to be learned

Shape (1, n).
Outputs of layer 1,
inputs to layer 2.

Shape (1, n).
Outputs of layer 1,

inputs to layer 2.

Shape (n, dim(y)).
Weights to be learned.

Shape (1, dim(y)).
Output of network.

The output doesn’t necessarily need to be just one number; it could be some arbitrary dim(y) length vector.

Generalized 2-Layer Neural Network

Shape (1, dim(x)).
Input feature vector.

Shape (dim(x), n).
Weights to be learned

Shape (1, n).
Outputs of layer 1,
inputs to layer 2.

Shape (1, n).
Outputs of layer 1,

inputs to layer 2.

Shape (n, dim(y)).
Weights to be learned.

Shape (1, dim(y)).
Output of network.

Big idea: The shape of a weight matrix is determined by the dimensions of the input and output of that layer.

Layer 1 has weight matrix with shape (dim(x), n).
These are the weights for n neurons, each taking
dim(x) features as input.

This transforms a dim(x)-dimensional input
vector into an n-dimensional output vector.

Layer 2 has weight matrix with shape (n, dim(y)).
These are the weights for dim(y) neurons, each
taking n features as input.

This transforms an n-dimensional input vector
into a dim(y)-dimensional output vector.

3-Layer, 3-Neuron Neural Network

S

x1

x2

x3

>0?

S >0?

S >0?

S >0?

S >0?

S >0?

S y

3-Layer, 3-Neuron Neural Network
§ Layer 1:

§ x has shape (1, 3). Input vector, 3-dimensional.
§ Wlayer 1 has shape (3, 3). Weights for 3 neurons, each taking in

a 3-dimensional input vector.
§ hlayer 1 has shape (1, 3). Outputs of the 3 neurons at this layer.

§ Layer 2:
§ hlayer 1 has shape (1, 3). Outputs of the 3 neurons from the

previous layer.
§ Wlayer 2 has shape (3, 3). Weights for 3 new neurons, each

taking in the 3 previous perceptron outputs.
§ hlayer 2 has shape (1, 3). Outputs of the 3 new neurons at this

layer.

§ Layer 3:
§ hlayer 2 has shape (1, 3). Outputs from the previous layer.
§ Wlayer 3 has shape (3, 1). Weights for 1 final neuron, taking in

the 3 previous perceptron outputs.
§ y has shape (1, 1). Output of the final neuron.

Generalized 3-Layer Neural Network

§ Layer 1:
§ x has shape (1, dim(x))
§ Wlayer 1 has shape (dim(x), dim(L1))
§ hlayer 1 has shape (1, dim(L1))

§ Layer 2:
§ hlayer 1 has shape (1, dim(L1))
§ Wlayer 2 has shape (dim(L1), dim(L2))
§ hlayer 2 has shape (1, dim(L2))

§ Layer 3:
§ hlayer 2 has shape (1, dim(L2))
§ Wlayer 3 has shape (dim(L2), dim(y))
§ y has shape (1, dim(y))

Multi-Layer Neural Network

S

x1

x2

x3

>0?

S >0?

S >0?

S

S >0?

S >0?

S >0?

S >0?

S >0?

S >0?…

…

…

y

Note: Sometimes we
don’t apply the non-
linear function in the
last layer.

Multi-Layer Neural Network

§ Input to a layer: some dim(x)-dimensional input vector
§ Output of a layer: some dim(y)-dimensional output vector

§ dim(y) is the number of neurons in the layer (1 output per neuron)

§ Process of converting input to output:
§ Multiply the (1, dim(x)) input vector with a (dim(x), dim(y)) weight vector.

The result has shape (1, dim(y)).
§ Apply some non-linear function (e.g. sigmoid) to the result.

The result still has shape (1, dim(y)).

§ Big idea: Chain layers together
§ The input could come from a previous layer’s output
§ The output could be used as the input to the next layer

Deep Neural Network

…

x1

x2

x3

xL

… … … …

z(1)1

z(1)2

z(1)3

z(1)
K(1) z(n)

K(n)z(2)
K(2)

z(2)1

z(2)2

z(2)3 z(n)3

z(n)2

z(n)1

z(OUT)
1

z(OUT)
2

z(OUT)
3

z(n�1)
3

z(n�1)
2

z(n�1)
1

z(n�1)
K(n�1)

…

z(k)i = g(
X

j

W (k�1,k)
i,j z(k�1)

j) g = nonlinear activation function

Common Activation Functions

[source: MIT 6.S191 introtodeeplearning.com]

Important to use non-linear activation functions

y

x1

x2

x3 S
w12

w22

w32
>0?

S
w11

w21

w31

>0?

S
w1

w2

intermediate output h1

intermediate output h2

𝑦 = 𝜙(𝑤! 𝑤!!𝑥! +𝑤"!𝑥" +𝑤#!𝑥# +𝑤" 𝑤!"𝑥! +𝑤""𝑥" +𝑤#"𝑥#)
= 𝜙((𝑤!𝑤!! +𝑤"𝑤!")𝑥! + (𝑤!𝑤"! +𝑤"𝑤"")𝑥" + (𝑤!𝑤#! +𝑤"𝑤#")𝑥#)

 = 𝜙(𝑎𝑥! + 𝑏𝑥" + 𝑐𝑥#)

• With non-linear activation 𝜙 for intermediate output:

• Without intermediate activations 𝜙:

← same as not including a hidden layer!

Batch Sizes

x11

x21

x31
S

w12

w22

w32
>0?

S
w11

w21

w31

>0?

S
w1

w2

y1

intermediate output h11

intermediate output h21

x12

x22

x32
S

w12

w22

w32
>0?

S
w11

w21

w31

>0?

S
w1

w2

y2

intermediate output h12

intermediate output h22

Batch Sizes

We’re not changing the architecture; we’re just running the 2-neuron, 2-layer network twice to classify 2 inputs.

Batch Sizes

Rewriting in matrix form:

Batch Sizes

Shape (batch, dim(x)).
Input feature vector.

Shape (dim(x), n).
Weights to be learned

Shape (batch, n).
Outputs of layer 1,
inputs to layer 2.

Shape (batch, n).
Outputs of layer 1,

inputs to layer 2.

Shape (n, dim(y)).
Weights to be learned.

Shape (batch, dim(y)).
Output of network.

Big idea: We can “stack” inputs together to classify multiple inputs at once. The result is multiple outputs “stacked” together.

Multi-Layer Network, with Batches

§ Input to a layer: batch different dim(x)-dimensional input vectors
§ Output of a layer: batch different dim(y)-dimensional output vectors

§ dim(y) is the number of neurons in the layer (1 output per neuron)

§ Process of converting input to output:
§ Multiply the (batch, dim(x)) input matrix with a (dim(x), dim(y)) weight vector.

The result has shape (batch, dim(y)).
§ Apply some non-linear function (e.g. sigmoid) to the result.

The result still has shape (batch, dim(y)).

§ Big idea: Stack inputs/outputs to batch them
§ The multiplication by weights and non-linear function will be applied to each row

(data point in the batch) separately.

Quiz: Sizes of neural networks

We have a neural network with the
matrices drawn.

1. How many layers are in the network?

2. How many input dimensions dim(x)?

3. How many hidden neurons n?

4. How many output dimensions dim(y)?

5. What is the batch size?

𝑊!"#$%	'

𝑊!"#$%	(

ℎ

ℎ

𝑥

𝑦

Quiz: Sizes of neural networks

We have a neural network with the
matrices drawn.

1. How many layers are in the network?

2. How many input dimensions dim(x)?

3. How many hidden neurons n?

4. How many output dimensions dim(y)?

5. What is the batch size?

𝑊!"#$%	'

𝑊!"#$%	(

ℎ

ℎ

𝑥

𝑦

2

3

2

1

4

Next Time: Training Neural Networks & Applications

