
CS 188: Artificial Intelligence

Neural Networks

[These slides were created by Dan Klein, Pieter Abbeel, Anca Dragan for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Recall: Perceptron with Sigmoid Activation
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Recall: 2-Layer, 2-Neuron Neural Network
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Recall: 2-Layer, 2-Neuron Neural Network
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Recall: generalize number of hidden neurons
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The hidden layer doesn’t necessarily need to have 3 neurons; it could have any arbitrary number n neurons.



Recall: generalize number of input features

S

x1

x2

x3

w1n

w2n

w3n

>0?

wdim(x)1

S
w11

w21

w31

>0?

S

w1

wn

y

…

…

xdim(x)

wdim(x)n

The input feature vector doesn’t necessarily need to have 3 features; it could have some arbitrary number dim(x) of features.



Recall: generalize number of outputs
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The output doesn’t necessarily need to be just one number; it could be some arbitrary dim(y) length vector.



Recall: generalize number of layers
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Note: Sometimes we 
don’t apply the non-
linear function in the 
last layer.



Deep Neural Network for 3-way classification
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𝜙 = nonlinear activation function

• Neural network with L layers
• ℎ("): activations at layer l
• 𝑤("): weights taking activations 

from layer l-1 to layer l
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Recall: Common Activation Functions

[source: MIT 6.S191 introtodeeplearning.com] 



Recall: Sizes of neural networks 

We have a neural network with the 
matrices drawn.

1. How many layers are in the network?

2. How many input dimensions dim(x)?

3. How many hidden neurons n?

4. How many output dimensions dim(y)?

5. What is the batch size?
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Training Neural Networks



Recall: Deep Neural Network Training

Training the deep neural network is just like logistic regression:

  just w tends to be a much, much larger vector

-> just run gradient ascent 
 + stop when log likelihood of hold-out data starts to decrease



Batch Gradient Ascent on the Log Likelihood Objective

init 

for iter = 1, 2, …



Derivatives tables:

How about computing all the derivatives?

[source:  http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html



How about computing all the derivatives?

■ But neural net f is never one of those?
■ No problem: CHAIN RULE:

If 

Then

Derivatives can be computed by following well-defined procedures



Automatic differentiation software 
e.g. TensorFlow, PyTorch, Jax
Only need to program the function g(x,y,w)
Can automatically compute all derivatives w.r.t. all entries in w
This is typically done by caching info during forward computation pass 
of f, and then doing a backward pass = “backpropagation”
Autodiff / Backpropagation can often be done at computational cost 
comparable to the forward pass

Need to know this exists
How this is done? Details outside of scope of CS188, but we’ll 
show a basic example

Automatic Differentiation



§ Gradient of              at  w1 = 2, w2 = 3, w3 = 2
§ Think of g as a composition of many functions

§ Then, we can use the chain rule to compute the gradient

§ g = b + c

§ b = a × w2

§ a = w1
4

§ c = 5w1

Backpropagation*
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Properties of Neural Networks



Neural Networks Properties

§ Theorem (Universal Function Approximators).  A two-layer neural 
network with a sufficient number of neurons can approximate 
any continuous function to any desired accuracy.



Universal Function Approximation Theorem*

§ In words: Given any continuous function f(x), if a 2-layer neural 
network has enough hidden units, then there is a choice of 
weights that allow it to closely approximate f(x). 

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) ”Multilayer Feedforward Networks with Non-Polynomial Activation 
Functions Can Approximate Any Function”
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Neural Networks Properties

§ Theorem (Universal Function Approximators).  A two-layer neural 
network with a sufficient number of neurons can approximate 
any continuous function to any desired accuracy.

§ Practical considerations
§ Can be seen as learning the features 

§ Large number of neurons
§ Danger for overfitting
§ (hence early stopping!)



Preventing Overfitting in Neural Networks

Early stopping:

Weight regularization



Weight Regularization

What can go wrong when we maximize log-likelihood?
Example: logistic regression with only one datapoint: f(x)=1, y=+1

𝑤

• 𝑃 𝑦 = 	+1 𝑥;𝑤 = %
%&'!"⋅$(&)	

𝑤 can grow very large and lead to overfitting and learning instability

max
%
	log(

1
1 + 𝑒&%

) log	𝑃
Maximizing logP takes w to infinity



Weight Regularization

What can go wrong when we maximize log-likelihood?

𝑤 can grow very large

Solution: add an objective term to penalize weight magnitude

max.%
!

log 𝑃(𝑦 ! |𝑥 ! ; 𝑤) −
𝜆
2
%
+

𝑤+/

 𝜆	is a hyperparameter (typically 0.1 to 0.0001 or smaller)



Preventing Overfitting in Neural Networks

Early stopping:

Weight regularization: max. ∑! log 𝑃(𝑦 ! |𝑥 ! ; 𝑤) − 0
/
∑+𝑤+/

Dropout



Consistency vs. Simplicity

§ Example: curve fitting (regression, function approximation)

§ Consistency vs. simplicity
§ Ockham’s razor



Consistency vs. Simplicity

§ Usually algorithms prefer consistency by default (why?)

§ Several ways to operationalize “simplicity”
§ Reduce the hypothesis/model space

§ Assume more: e.g. independence assumptions, as in naïve Bayes
§ Fewer features or neurons
§ Other limits on model structure

§ Regularization
§ Laplace Smoothing: cautious use of small counts
§ Small weight vectors in neural networks (stay close to zero-mean prior)
§ Hypothesis space stays big, but harder to get to the outskirts



Fun Neural Net Demo Site

Demo-site:
http://playground.tensorflow.org/

http://playground.tensorflow.org/


Summary of Key Ideas
Optimize probability of label given input

Continuous optimization
Gradient ascent:

Compute steepest uphill direction = gradient (= just vector of partial derivatives)
Take step in the gradient direction
Repeat (until held-out data accuracy starts to drop = “early stopping”)

Deep neural nets
Last layer = still logistic regression
Now also many more layers before this last layer

= computing the features
the features are learned rather than hand-designed

Universal function approximation theorem
If         neural net is large enough 
Then   neural net can represent any continuous mapping from input to output with arbitrary accuracy
But remember: need to avoid overfitting  / memorizing the training data ? early stopping!

Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 188)



Next: How well does deep learning work?


