
CS 188 Introduction to Artificial Intelligence
Fall 2023 Note 23
Author (all other notes): Nikhil Sharma

Author (Bayes’ Nets notes): Josh Hug and Jacky Liang, edited by Regina Wang

Author (Logic notes): Henry Zhu, edited by Peyrin Kao

Credit (Machine Learning and Logic notes): Some sections adapted from the textbook Artificial Intelligence:
A Modern Approach.

Last updated: August 26, 2023

In this note we will cover how to optimize functions using the gradient descent algorithm. We will also
learn about a classification method called logistic regression and how it can be extended to multi-class
classification. This will motivate our further discussion on neural networks and backpropagation.

Optimization
We saw in the previous note in the linear regression method that we can derive a closed form solution for
the optimal weights by just differentiating the loss function and setting the gradient equal to zero. In general
though, a closed form solution may not exist for a given objective function. In cases like that we have to
use gradient-based methods to find the optimal weights. The idea behind this is that the gradient points
towards the direction of steepest increase of the objective. We maximize a function by moving towards the
steepest ascent, and we minimize a function by moving towards the steepest descent direction.

Gradient ascent is used if the objective is a function which we try to maximize.

Randomly initialize w
while w not converged do

w← w+α∇w f (w)
end

Algorithm 1: Gradient ascent

Gradient descent is used if the objective is a loss function that we are trying to minimize. Notice that this
only differs from gradient ascent in that we follow the opposite direction of the gradient.

Randomly initialize w
while w not converged do

w← w−α∇w f (w)
end

Algorithm 2: Gradient descent

At the beginning, we initialize the weights randomly. We denote the learning rate, which captures the size
of the steps we make towards the gradient direction, with α . For most functions in the machine learning
world it is hard to come up with an optimal value for the learning rate. In reality, we want a learning rate
that is large enough so that we move fast towards the correct direction but at the same time small enough
so that the method does not diverge. A typical approach in machine learning literature is to start gradient
descent with a relatively large learning rate and reduce the learning rate as the number of iterations increases

CS 188, Fall 2023, Note 23 1



(learning rate decay).

If our dataset has a large number of n data points then computing the gradient as above in each iteration of
the gradient descent algorithm might be too computationally intensive. As such, approaches like stochastic
and batch gradient descent have been proposed. In stochastic gradient descent at each iteration of the
algorithm we use only one data point to compute the gradient. That one data point is each time randomly
sampled form the dataset. Given that we only use one data point to estimate the gradient, stochastic gradient
descent can lead to noisy gradients and thus make convergence a bit harder. Mini-batch gradient descent
is a compromise between stochastic and the ordinary gradient descent algorithm as it uses a batch of size m
of data points each time to compute the gradients. The batch size m is a user specified parameter.

Let’s see an example of gradient descent on a model we’ve seen before—linear regression. Recall that in
linear regression, we defined our loss function as

Loss(hw) =
1
2
∥y−Xw∥2

2

Linear regression has a celebrated closed form solution ŵ = (XT X)−1XT y, which we saw in the last note.
However, we could have also chosen to solve for the optimal weights by running gradient descent. We’d
calculate the gradient of our loss function as

∇wLoss(hw) =−XT y+XT Xw

Then, we use this gradient to write out the gradient descent algorithm for linear regression:

Randomly initialize w
while w not converged do

w← w−α(−XT y+XT Xw)
end

Algorithm 3: Least squares gradient descent

It is a good exercise to create a linear regression problem and confirm that the closed form solution is the
same as the converged solution you obtain from gradient descent.

CS 188, Fall 2023, Note 23 2


