CS 188 Section Handout: Probability Basics

Let $D \in\left\{d_{0}, d_{1}, d_{2}, d_{3}\right\}$ be one of four dice, where d_{0} is fair. Let $R \in[1,6]$ be the outcome of a die roll.

1 Joint probability assembly

A casino employee informs you (the inspector) about a dealer, Angelo: "He cheats a third of the time, using loaded die d_{1} for which the six-dotted side shows up five times as often as each of the other sides."

D	$P(D)$
d_{0}	
d_{1}	

R	D	$P(R \mid D)$
1	d_{0}	
2	d_{0}	
3	d_{0}	
4	d_{0}	
5	d_{0}	
6	d_{0}	
1	d_{1}	
2	d_{1}	
3	d_{1}	
4	d_{1}	
5	d_{1}	
6	d_{1}	

R	D	$P(R, D)$
1	d_{0}	
2	d_{0}	
3	d_{0}	
4	d_{0}	
5	d_{0}	
6	d_{0}	
1	d_{1}	
2	d_{1}	
3	d_{1}	
4	d_{1}	
5	d_{1}	
6	d_{1}	

2 Estimation

Your informant reports back with the following statistics about another dealer, Bert: "He uses two dice, both loaded. Using d_{2}, I watced him roll 15 sixes, 10 fives, 5 fours, 5 threes, 5 twos, and no ones. With d_{3}, I observed 5 sixes, 10 fives, 15 fours, 15 threes, 15 twos, and 20 ones."

R	D	$c(R, D)$
1	d_{2}	
2	d_{2}	
3	d_{2}	
4	d_{2}	
5	d_{2}	
6	d_{2}	
1	d_{3}	
2	d_{3}	
3	d_{3}	
4	d_{3}	
5	d_{3}	
6	d_{3}	

R	D	$P(R, D)$
1	d_{2}	
2	d_{2}	
3	d_{2}	
4	d_{2}	
5	d_{2}	
6	d_{2}	
1	d_{3}	
2	d_{3}	
3	d_{3}	
4	d_{3}	
5	d_{3}	
6	d_{3}	

3 Inference by enumeration

- What is $P(R=6 \mid$ dealer $=A)$?
- What is $P(R=6 \mid$ dealer $=B)$?
- What is $P\left(D=d_{0} \mid R=6\right.$, dealer $\left.=A\right)$?
- What is $P\left(D=d_{0} \mid\right.$ dealer $\left.=B\right)$?
- What is $P\left(D=d_{2} \mid\right.$ dealer $\left.=B\right)$?

Suppose you know that A works some five nights per week and B works on some other two nights.

- What is $P(D)$?

D	$P(D)$
d_{0}	
d_{1}	
d_{2}	
d_{3}	

- One night, you observe a dealer (A or B) roll a six. What is the probability that the die is loaded?

4 Sequence of independent events

You confront the suspected dealer and ask him to roll his current die three times in a row. He rolls the sequence $S=(6,2,6)$

Calculate the following likelihood probabilities:

- $P\left(S \mid D=d_{0}\right)=$
- $P\left(S \mid D=d_{1}\right)=$
- $P\left(S \mid D=d_{2}\right)=$
- $P\left(S \mid D=d_{3}\right)=$

5 Bayes' Rule

Given the evidence you acquired previously, determine which die was rolled:

$$
\hat{d}=\arg \max _{d} P(D=d \mid S)
$$

Is the die loaded? Which dealer are you arresting?

