CS 188: Artificial Intelligence Spring 2006

Lecture 10: Perceptrons 2/16/2006

Dan Klein - UC Berkeley Many slides from either Stuart Russell or Andrew Moore

Today

- Naïve Bayes models
 - Smoothing
 - Real world issues
- Perceptrons
 - Mistake diven learning
 - Data separation, margins, and convergence

General Naïve Bayes

• This is an example of a *naive Bayes* model:

$$P(\mathsf{Cause}, \mathsf{Effect}_1 \dots \mathsf{Effect}_n) =$$

$$P(\mathsf{Cause}) \prod_i P(\mathsf{Effect}_i | \mathsf{Cause})$$

• Total number of parameters is *linear* in n!

Example: Spam Filtering

- Model: $P(C, W_1 \dots W_n) = P(C) \prod P(W_i|C)$
- Parameters:

$$P(C)$$
ham: 0.66
spam: 0.33

P(W spam)				
the	:	0.016		
to	:	0.015		
and	:	0.012		
free	:	0.001		
click	:	0.001		
morally	:	0.001		
nicely	:	0.001		
1				

P(W|ham)the : 0.021 and : 0.011 ... screens : 0.000 minute : 0.000

Estimation: Laplace Smoothing

- Laplace's estimate:
 - Pretend you saw every outcome once more than you actually did

$$P_{LAP}(x) = \frac{c(x) + 1}{\sum_{x} [c(x) + 1]}$$

$$P_{ML}(X) =$$

$$=\frac{c(x)+1}{N+|Y|}$$

$$P_{LAP}(X) =$$

• Can derive this as a maximum a posteriori estimate using Dirichlet priors (see cs281a)

Estimation: Laplace Smoothing

- Laplace's estimate (extended):

- Pretend you saw every outcome k extra times
 - $P_{LAP,k}(x) = \frac{c(x) + k}{N + k|X|}$
- $P_{LAP,0}(X) =$
- What's Laplace with k = 0? • k is the strength of the prior
- $P_{LAP,1}(X) =$
- Laplace for conditionals: Smooth each condition
- $P_{LAP.100}(X) =$
- independently:

$$P_{LAP,k}(x|y) = \frac{c(x,y) + k}{c(y) + k|X|}$$

Estimation: Linear Interpolation

- In practice, Laplace often performs poorly for P(X|Y):
 - When |X| is very large
 - When |Y| is very large
- Another option: linear interpolation
 - Get unconditional P(X) from the data
 - Make sure the estimate of P(X|Y) isn't too different from P(X)

$$P_{LIN}(x|y) = \alpha \hat{P}(x|y) + (1.0 - \alpha)\hat{P}(x)$$

- What if α is 0? 1?
- For even better ways to estimate parameters, as well as details of the math see cs281a, cs294-5

Real NB: Smoothing

- For real classification problems, smoothing is critical
- ... and usually done badly, even in big commercial systems
- New odds ratios:

 $P(W|\mathsf{ham})$ $\overline{P(W|\text{spam})}$

helvetica : 11.4 group : 10 2 ago areas 8.3

P(W|spam)P(W|ham)

verdana : 28.8 order : 27.2 : 26.9 money : 26.5

Do these make more sense?

Tuning on Held-Out Data

- Now we've got two kinds of unknowns

 Parameters: the probabilities P(Y|X), P(Y)
 - Hyper-parameters, like the amount of smoothing to do: k, α
- Where to learn?
 - Learn parameters from training data
 Must tune hyper-parameters on different

 - Why?
 For each value of the hyper-parameters, train and test on the held-out data
 - Choose the best value and do a final test on the test data

Spam Example

Word P(w|spam) P(w|ham) Tot Ham (prior) 0.33333 0.66666

P(spam | w) = 0.989

Confidences from a Classifier

- The confidence of a probabilistic classifier:
- Posterior over the top label

 $confidence(x) = arg \max_{y} P(y|x)$

- Represents how sure the classifier is of the classification
- Any probabilistic model will have confidences
- No guarantee confidence is correct
- - Weak calibration: higher confidences mean higher accuracy
 - Strong calibration: confidence predicts accuracy rate
 - What's the value of calibration?

Precision vs. Recall

- Let's say we want to classify web pages as homepages or not
 - In a test set of 1K pages, there are 3 homepages Our classifier says they are all non-homepages
 - 99.7 accuracy!

- Precision: fraction of guessed positives which were actually positive
- Recall: fraction of actual positives which were guessed as positive
- Say we guess 5 homepages, of which 2 were actually homepages

 Precision: 2 correct / 5 guessed = 0.4
 - Recall: 2 correct / 3 true = 0.67
- Which is more important in customer support email automation?
- Which is more important in airport face recognition?

Precision vs. Recall

- Precision/recall tradeoff
 - Often, you can trade off precision and recall
 - Only works well with weakly calibrated classifiers

- To summarize the tradeoff:
 - Break-even point: precision value when p = r
 - F-measure: harmonic mean of p and r:

$$F_1 = \frac{2}{1/p + 1/r}$$

Errors, and What to Do

Examples of errors

Dear GlobalSCAPE Customer,

ClobalSCAPE has partnered with ScanSoft to offer you the latest version of OmniPage Pro, for just \$99.99* - the regular list price is \$499! The most common question we've received about this offer is - Is this genuine? We would like to assure you that this offer is authorized by ScanSoft, is genuine and valid. You can get the . . .

. . . To receive your \$30 Amazon.com promotional certificate, click through to

http://www.amazon.com/apparel

and see the prominent link for the \$30 offer. All details are there. We hope you enjoyed receiving this message. However, if you'd rather not receive future e-mails announcing new store launches, please click . . .

What to Do About Errors?

- Need more features— words aren't enough!
 - Have you emailed the sender before?
 - Have 1K other people just gotten the same email?
 - Is the sending information consistent?
 - Is the email in ALL CAPS?
 - Do inline URLs point where they say they point?
 - Does the email address you by (your) name?
- Naïve Bayes models can incorporate a variety of features, but tend to do best in homogeneous cases (e.g. all features are word occurrences)

Features

- A feature is a function which signals a property of the input
- - ALL CAPS: value is 1 iff email in all caps
- HAS_URL: value is 1 iff email has a URL
- NUM_URLS: number of URLs in email VERY_LONG: 1 iff email is longer than 1K
- SUSPICIOUS_SENDER: 1 iff reply-to domain doesn't match originating
- Features are anything you can think of code to evaluate on an input
 - Some cheap, some very very expensive to calculate
 Can even be the output of another classifier

 - Domain knowledge goes here!
- In naïve Bayes, how did we encode features?

Feature Extractors

A feature extractor maps inputs to feature vectors

- Many classifiers take feature vectors as inputs
- Feature vectors usually very sparse, use sparse encodings (i.e. only represent non-zero keys)

Generative vs. Discriminative

- Generative classifiers:
 - E.g. naïve Bayes
 - We build a causal model of the variables
 - We then query that model for causes, given evidence
- Discriminative classifiers:
 - E.g. perceptron (next)
 - No causal model, no Bayes rule, often no probabilities
 - Try to predict output directly
 - · Loosely: mistake driven rather than model driven

The Perceptron Update Rule

- Start with zero weights
- Pick up training instances one by one
- Try to classify

$$\begin{split} c &= \arg\max_{c} \ w_{c} \cdot f(x) \\ &= \arg\max_{c} \ \sum_{i} w_{c,i} \cdot f_{i}(x) \end{split}$$

- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

$$w_c = w_c - f(x)$$

$$w_{c^*} = w_{c^*} + f(x)$$

Example

- "win the vote"
- "win the election"
- "win the game"

 w_{SPORTS}

BIAS	:	
win	:	
game	:	
vote	:	
the	:	

 $w_{POLITICS}$

BIAS

win

game vote

the

WTECH

BIAS:
win:
game:
yote:

Mistake-Driven Classification

- In naïve Bayes, parameters:
 - From data statistics
 - Have a causal interpretation
 - One pass through the data
- For the perceptron parameters:
 - From reactions to mistakes
 - Have a discriminative interpretation
 - Go through the data until held-out accuracy maxes out

Training Data

Held-Out Data

Test Data

Properties of Perceptrons

- Separability: some parameters get the training set perfectly correct
- Convergence: if the training is separable, perceptron will eventually converge (binary case)
- Mistake Bound: the maximum number of mistakes (binary case) related to the margin or degree of separability

mistakes
$$<\frac{1}{\delta^2}$$

Non-Separable

Issues with Perceptrons

- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining isn't quite as bad as overfitting, but is similar
- Regularization: if the data isn't separable, weights might thrash around
 Averaging weight vectors over time can help (averaged perceptron)
- Mediocre generalization: finds a "barely" separating solution

Summary

- Naïve Bayes
 - Build classifiers using model of training data
 - Smoothing estimates is important in real systems
 - Classifier confidences are useful, when you can get them
- Perceptrons:
 - Make less assumptions about data
 - Mistake-driven learning
 - Multiple passes through data