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CS 188: Artificial Intelligence
Spring 2006

Lecture 11: Decision Trees
2/21/2006

Dan Klein – UC Berkeley

Many slides from either Stuart Russell or Andrew Moore 

Today

Formalizing Learning
Consistency
Simplicity

Decision Trees
Expressiveness
Information Gain
Overfitting

Inductive Learning (Science)
Simplest form: learn a function from examples

A target function: f
Examples: input-output pairs (x, f(x))
E.g. x is an email and f(x) is spam / ham
E.g. x is a house and f(x) is its selling price

Problem:
Given a hypothesis space H
Given a training set of examples xi
Find a hypothesis h(x) such that h ~ f

Includes:
Classification (multinomial outputs)
Regression (real outputs)

How do perceptron and naïve Bayes fit in?  (H, f, h, etc.)

Inductive Learning
Curve fitting (regression, function approximation):

Consistency vs. simplicity
Ockham’s razor

Consistency vs. Simplicity
Fundamental tradeoff: bias vs. variance, etc.

Usually algorithms prefer consistency by default (why?)

Several ways to operationalize “simplicity”
Reduce the hypothesis space

Assume more: e.g. independence assumptions, as in naïve Bayes
Have fewer, better features / attributes: feature selection
Other structural limitations (decision lists vs trees)

Regularization
Smoothing: cautious use of small counts
Many other generalization parameters (pruning cutoffs today)
Hypothesis space stays big, but harder to get to the outskirts

Reminder: Features
Features, aka attributes

Sometimes: TYPE=French
Sometimes: fTYPE=French(x) = 1
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Decision Trees

Compact representation of a function:
Truth table
Conditional probability table
Regression values

True function
Realizable: in H

Expressiveness of DTs
Can express any function of the features

However, we hope for compact trees

Comparison: Perceptrons
What is the expressiveness of a perceptron over these features?

DTs automatically conjoin features / attributes
Features can have different effects in different branches of the tree!

For a perceptron, a feature’s contribution is either positive or 
negative

If you want one feature’s effect to depend on another, you have to add a 
new conjunction feature
E.g. adding “PATRONS=full ∧ WAIT = 60” allows a perceptron to model 
the interaction between the two atomic features

Difference between modeling relative evidence weighting (NB) and 
complex evidence interaction (DTs)

Though if the interactions are too complex, may not find the DT greedily

Hypothesis Spaces
How many distinct decision trees with n Boolean attributes?

= number of Boolean functions over n attributes
= number of distinct truth tables with 2n rows
= 2^(2n)

E.g., with 6 Boolean attributes, there are
18,446,744,073,709,551,616 trees

How many trees of depth 1 (decision stumps)?
= number of Boolean functions over 1 attribute
= number of truth tables with 2 rows, times n
= 4n

E.g. with 6 Boolean attributes, there are 24 decision stumps

More expressive hypothesis space:
Increases chance that target function can be expressed (good)
Increases number of hypotheses consistent with training set (bad, why?)
Means we can get better predicitions (lower bias)
But we may get worse predictions (higher variance)

Decision Tree Learning
Aim: find a small tree consistent with the training examples
Idea: (recursively) choose “most significant” attribute as root of 
(sub)tree

Choosing an Attribute

Idea: a good attribute splits the examples into subsets 
that are (ideally) “all positive” or “all negative”

So: we need a measure of how “good” a split is, even if 
the results aren’t perfectly separated out



3

Entropy and Information
Information answers questions

The more uncertain about the answer initially, the more 
information in the answer
Scale: bits

Answer to Boolean question with prior <1/2, 1/2>?  
Answer to 4-way question with prior <1/4, 1/4, 1/4, 1/4>?
Answer to 4-way question with prior <0, 0, 0, 1>?
Answer to 3-way question with prior <1/2, 1/4, 1/4>?

A probability p is typical of:
A uniform distribution of size 1/p
A code of length log 1/p

Entropy

General answer: if prior is <p1,…,pn>:
Information is the expected code length

Also called the entropy of the distribution
More uniform = higher entropy
More values = higher entropy
More peaked = lower entropy
Rare values almost “don’t count”

1 bit

0 bits

0.5 bit

Information Gain
Back to decision trees!
For each split, compare entropy before and after

Difference is the information gain
Problem: there’s more than one distribution after split!

Solution: use expected entropy, weighted by the number of examples
Note: hidden problem here!  Gain needs to be adjusted for large-domain 
splits – why?

Next Step: Recurse

Now we need to keep growing the tree!
Two branches are done (why?)
What to do under “full”?

See what examples are there…

Example: Learned Tree
Decision tree learned from these 12 examples:

Substantially simpler than “true” tree
A more complex hypothesis isn't justified by data

Also: it’s reasonable, but wrong

Example: Miles Per Gallon
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mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia
bad 6 medium medium medium medium 70to74 america
bad 4 medium medium medium low 75to78 europe
bad 8 high high high low 70to74 america
bad 6 medium medium medium medium 70to74 america
bad 4 low medium low medium 70to74 asia
bad 4 low medium low low 70to74 asia
bad 8 high high high low 75to78 america
: : : : : : : :
: : : : : : : :
: : : : : : : :
bad 8 high high high low 70to74 america
good 8 high medium high high 79to83 america
bad 8 high high high low 75to78 america
good 4 low low low low 79to83 america
bad 6 medium medium medium high 75to78 america
good 4 medium low low low 79to83 america
good 4 low low medium high 79to83 america
bad 8 high high high low 70to74 america
good 4 low medium low medium 75to78 europe
bad 5 medium medium medium medium 75to78 europe
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Find the First Split

Look at information gain 
for each attribute

Note that each attribute is 
correlated with the target!

What do we split on?

Result: Decision Stump

Second Level Final Tree

Reminder: Overfitting

Overfitting:
When you stop modeling the patterns in the 
training data (which generalize)
And start modeling the noise (which doesn’t)

We had this before:
Naïve Bayes: needed to smooth
Perceptron: didn’t really say what to do about 
it (stay tuned!)

MPG Training 
Error

The test set error is much worse than the 
training set error…

…why?
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Consider this 
split

Significance of a Split
Starting with:

Three cars with 4 cylinders, from Asia, with medium HP
2 bad MPG
1 good MPG

What do we expect from a three-way split?
Maybe each example in its own subset?
Maybe just what we saw in the last slide?

Probably shouldn’t split if the counts are so small they could be due 
to chance

A chi-squared test can tell us how likely it is that deviations from a
perfect split are due to chance (details in the book)

Each split will have a significance value, pCHANCE

Keeping it General

Pruning:
Build the full decision tree
Begin at the bottom of the tree
Delete splits in which 

pCHANCE > MaxPCHANCE
Continue working upward until 
there are no more prunable
nodes
Note: some chance nodes may 
not get pruned because they 
were “redeemed” later

a b y
0 0 0
0 1 1
1 0 1
1 1 0

y = a XOR b

Pruning example

With MaxPCHANCE = 0.1:

Note the improved 
test set accuracy 

compared with the 
unpruned tree

Regularization

MaxPCHANCE is a regularization parameter
Generally, set it using held- out data (as usual)

Small Trees Large Trees

MaxPCHANCE

IncreasingDecreasing

Ac
cu

ra
cy

High Bias High Variance

Held-out / Test

Training

Two Ways of Controlling Overfitting

Limit the hypothesis space
E.g. limit the max depth of trees
Easier to analyze (coming up)

Regularize the hypothesis selection
E.g. chance cutoff
Disprefer most of the hypotheses unless data 
is clear
Usually done in practice
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Learning Curves

Another important trend:
More data is better!
The same learner will generally do better with more data
(Except for cases where the target is absurdly simple)

Summary

Formalization of learning
Target function
Hypothesis space
Generalization

Decision Trees
Can encode any function
Top-down learning (not perfect!)
Information gain
Bottom-up pruning to prevent overfitting


