CS 188: Artificial Intelligence Spring 2006

Lecture 12: Learning Theory 2/23/2006

Dan Klein – UC Berkeley

Many slides from either Stuart Russell or Andrew Moore

Today

- A Taste of Learning Theory
- Sample Complexity
 - PAC-Learning
 - VC Dimension
- Mistake Bounds
- Note: goal of today is to illustrate what learning theory is like – you don't need to catch all the fine details!

Learning Theory

- Mathematical investigation of learning
- Kinds of things we can show:
 - Sample complexity bounds: how many examples needed to learn the target
 - Generalization bounds: how bad can test error be given training error
 - Mistake bounds (for online learning): how many errors can we make before we learn the target
- Often, make simplifying assumptions:
 - No noise in training labels
 - Target is realizable (i.e, f in H)
 - Test distribution same as training distribution

Realizable Learning

- Learn a realizable function from examples:
 - A hypothesis space H
 - A target function: $f \in H$
 - Examples: input-output pairs (x, f(x))
 - E.g. x is an email and f(x) is spam / ham
 - Examples drawn from some distribution D



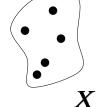
- Problem:
 - Given a training set of examples $T = \{x_i\}$ with labels $f(x_i)$
 - Find a hypothesis h such that h ~ f
 - $h \sim f$ means that the test error of h will be low (more soon)

Train and Test Errors

- Training error (or empirical error)
 - Error rate on training set:

$$\mathsf{ERR}_{\mathsf{TRAIN}}(h,T) = \frac{1}{|T|} \sum_{i} I(f(x_i) \neq h(x_i))$$

Consistency: zero error on training set



- Test error (or true error)
 - Error rate on all examples from D:

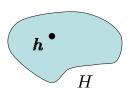
$$\mathsf{ERR}_{\mathsf{TEST}}(h,D) = \sum_{x \in X} P_D(x) I(f(x) \neq h(x))$$

- h is ε -good if its true error is less than ε
- We usually have to minimize training error and hope for good generalization to test error

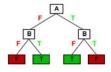
 \boldsymbol{X}

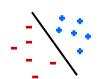
Reminder: Hypothesis Classes

- Hypothesis class H:
 - The set of functions a learner L can learn
 - Distinct from the learner, which has some method for choosing h from H



- Example (binary) hypothesis classes:
 - The constant functions, e.g. {true, false}
 - Decision stumps
 - All binary functions (decision trees)
 - Linear binary decision boundaries
 - NB, Perceptron both learn this class!



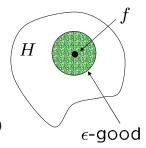


Learning a Target

- What do we mean by "learning" a target function?
- Older approach: learning in the limit
 - Insist on exactly identifying target (eventually)
 - Usually impossible (why?)
- Newer approach: just get "close"
 - Don't need the correct hypothesis
 - Only want one which has very low error (approximately correct)
 - Might draw a really crummy data set
 - Only require that learning usually works (probable learning)
- Probably approximately correct (PAC) learning

PAC Learning

- Setup:
 - Fix class *H*, learner *L*
 - Unknown realizable target f
 - Unknown example distribution D
 - L gets N examples from D
 - L picks some h consistent with examples
 - (Assumes this is both possible and efficient)



- Question: sample complexity
 - How many examples do we need before we know that h is probably approximately correct?
 - Formally: what is the smallest N such that with probability at least 1-δ the test error of h will be ε-good?

Bounding Failure Probability

- What does it take to for a learner to fail?
 - There has to be a lucky hypothesis
 - It aces the training data DESPITE being ☜-bad!
- How likely is it for an \$\mathbb{T}\$-bad hypothesis to get one example right?

$$P(\text{one example right} | \epsilon\text{-bad}) \leq 1 - \epsilon$$

How likely is it for a bad hypothesis to get all N examples right?

$$P(\text{all } N \text{ right} | \epsilon\text{-bad}) \leq (1 - \epsilon)^N$$

- How likely that some hypothesis manages this feat of disguise?
 - At most |H| are bad, and each gets a shot at sneaking by:

 $P(\text{some bad } h \text{ gets all } N \text{ right}) \leq |H|(1-\epsilon)^N$

Calculating The Sample Bound

So, probability of failure is

$$P(\text{some bad } h \text{ gets all } N \text{ right}) \leq |H|(1-\epsilon)^N$$

- PAC learning requires failure to be below at most delta (user-supplied)
- So, we want $\delta \leq |H|(1-\epsilon)^N$
- If we solve for N:

$$N \ge \frac{1}{\epsilon} \left(\ln|H| + \ln\frac{1}{\delta} \right)$$

The Sample Bound

Let's parse this bound!

$$N \ge \frac{1}{\epsilon} \left(\ln|H| + \ln \frac{1}{\delta} \right)$$

- Says that the number of samples we need depends on
 - The required epsilon, delta
 - The size of the hypothesis space
 - NOT the data distribution D!
- Shows formally that simpler hypothesis spaces require fewer samples to learn (which we've been suggesting all along)

Practice: Hypothesis Sizes

- Decision stumps over m binary attributes
 - Number: 4m
 - Sample complexity: logarithmic in m!
- Number of disjunctive hypotheses over m attrs
 - E.g.: SomePatrons ∨ LittleWait ∨ NoChoice ∨ Hungry
 - Number:
 - Sample complexity:

Practice: Lookup Tables

- H = all truth tables
- Question: if there are m attributes, what is the size of the complete set of hypotheses in f?

$$|H| = 2^{2^m}$$

- Why is this the same as the number of decision trees over m attributes (last class)?
- Sample complexity?

$$N \ge ln|H| = 2^m$$

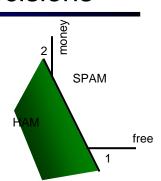
Bad news!

X1	X2	ХЗ	X4	Υ
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Practice: Linear Decisions

- Reminder: (binary) perceptrons learn linear separators
 - Add up the weights of the active features
 - If large enough, positive class
 - Otherwise, negative class
 - Decision boundary is a line / plane / hyperplane
- So, what's |H| for 2-D linear separators?
 - Each hypothesis is a line (and a sign)
 - Number of lines in 2D? $|H| = \infty$
 - Sample complexity? N >

≥ ∞ VERY bad news!



Infinite Hypothesis Spaces

- With continuous parameters, H is infinite
 - E.g. perceptron, naïve Bayes
 - Yet, we never really need infinite samples
 - Explanation: linear separators can't represent very many behaviors on a fixed training set
- Example: N points in a plane
 - How many classifications can we actually make, using a threshold?

- Only N+1
- Most labelings can't be represented with this H

VC Dimension

- Vapnik-Chervonenkis (VC) dimension
 - A kind of measure of "effective" size of a hypothesis space |H|
 - Can be finite even in continuous spaces
 - (You will not need to know the details of this!)
- Definition: H shatters a data set T if any labeling of T can given by an h in H
- Example: points on a line, with H = threshold and positive direction

Example: Shattering

• Example: points on a plane

• In general: hyperplanes in Rⁿ can shatter n+1 points

VC Dimension II

- Definition: the VC dimension of a hypothesis class H is the size of the largest set X it can shatter
- Example: VC dimension of the class of linear separators in n dimensions is n+1
- Example: circles around the origin

VC-Based Bounds

Remember our PAC bound?

$$N \ge \frac{1}{\epsilon} \left(\ln|H| + \ln\frac{1}{\delta} \right)$$

Can show a VC-based bound:

$$N \ge \frac{8}{\epsilon} \left(VC(H) \log \frac{13}{\epsilon} + \frac{1}{2} \log \frac{2}{\delta} \right)$$

- (Details and constants are NOT IMPORTANT)
- Modulo details: the log |H| has been replaced with VC(H)
- What does this mean (very loosely) for a perceptron over m features?
- What do you think happens in practice?

Some Things We Won't Show

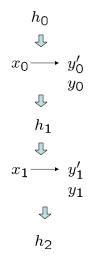
- VC dimension turns out to be very useful
- Many results from learning theory exploit it
- Can show generalization bounds, which bound the error on future examples using the training error and the VC dimension
- This is neat stuff (not always directly correlated with what works in practice, though)

Other Bounds

- Reset!
- So far: sample complexity bounds
- Other kinds of bounds:
 - Mistake bounds (now)
 - Generalization bounds (never)

Online Learning

- Online learning:
 - Receive examples one at a time
 - Make a prediction on each one
 - Learn the label and update hypothesis
 - Can't go back
 - Hopefully, stop making errors at some point
- We've already seen one online algorithm (what)?
- Main bound for online: maximum number of mistakes (ever!)
 - Only works if target realizable
 - In practice, online algorithms usually keep making mistakes forever (like any other method)



Learning Disjunctions

- Hypothesis space: disjunctions over n positive Boolean attributes (features)
- Example:
 - Attributes: SomePatrons, FrenchFood, HasBar, ...
 - Target (WillEat): SomePatrons ∨ LittleWait ∨ NoChoice ∨ Hungry
- An algorithm:
 - Start with all variables in the disjunction
 - When we make a mistake, throw out any positive variables in negative example

Learning Disjunctions

- Example:
 - Hypothesis: FullPatrons ∨ SomePatrons ∨ LittleWait ∨ NoChoice
 ∨ Hungry ∨ FrenchFood ∨ HasBar ∨ IsWeekend
 - Example: SomePatrons ∧ LittleWait ∧ FrenchFood : true
 - Example: FullPatrons ∧ FrenchFood ∧ IsWeekend : false
 - Example: HasBar ∧ Hungry: true
 - Example: FullPatrons ∧ HasBar : false
- How many mistakes can we possibly make?
 - Each mistake throws out some variable (why?)
 - Can make at most n mistakes! (ever!)

Winnow

- A perceptron-like algorithm
 - We'll do the two-class case
- Algorithm:
 - Start with weight 1 on all features
 - For an example feature vector f(x), we calculate:

$$\sum_{i} w_i f_i(x) \ge n$$

- If sum > n, output class 1, otherwise 0
- If we make a mistake:

Guessed 0 (weights too low)

Guessed 1 (weights too high)

$$w_i = w_i \cdot 2^{f_i(x)}$$

$$w_i = w_i \cdot \frac{1}{2}^{f_i(x)}$$

Winnow Example

"win the match"

"win the vote"

"win the game"

w

BIAS : win :

game : vote :

match :

POLITICS is the + class

Winnow Mistake Bound

- Assume the target is a sparse disjunction:
 - k << n variables out of n</p>
 - E.g. there are k spam words out of n total words
 - (rarely entirely true in practice)
- Can show: total mistakes is O(k log n)
- Much better than the previous algorithm!

That's It For Learning Theory

- Hopefully, you've gotten a taste of what LT is about!
- More sophisticated results take into account:
 - Unrealizable functions
 - Noisy labelings
 - Multiple learners (ensembles)
 - How to estimate generalization error
- What I concretely expect you to take away:
 - Understand ε-good, PAC learning criterion
 - Be able to show where the basic bound in |H| comes from
 - Be able to find the size of a (finite) hypothesis space
 - Know what online learning and mistake bounds are