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CS 188: Artificial Intelligence
Spring 2006

Lecture 12: Learning Theory
2/23/2006

Dan Klein – UC Berkeley

Many slides from either Stuart Russell or Andrew Moore 

Today
A Taste of Learning Theory

Sample Complexity
PAC-Learning
VC Dimension

Mistake Bounds

Note: goal of today is to illustrate what learning 
theory is like – you don’t need to catch all the 
fine details!
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Learning Theory
Mathematical investigation of learning

Kinds of things we can show:
Sample complexity bounds: how many examples needed to 
learn the target
Generalization bounds: how bad can test error be given training 
error
Mistake bounds (for online learning): how many errors can we 
make before we learn the target

Often, make simplifying assumptions:
No noise in training labels
Target is realizable (i.e, f in H)
Test distribution same as training distribution

Realizable Learning
Learn a realizable function from examples:

A hypothesis space H
A target function: f ∈ H
Examples: input-output pairs (x, f(x))

E.g. x is an email and f(x) is spam / ham
Examples drawn from some distribution D

Problem:
Given a training set of examples T={xi} with labels f(xi)
Find a hypothesis h such that h ~ f
h ~ f means that the test error of h will be low (more soon)
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Train and Test Errors
Training error (or empirical error)

Error rate on training set:

Consistency: zero error on training set

Test error (or true error)
Error rate on all examples from D:

h is ε-good if its true error is less than ε
We usually have to minimize training error and 
hope for good generalization to test error

Reminder: Hypothesis Classes
Hypothesis class H:

The set of functions a learner L can learn
Distinct from the learner, which has some 
method for choosing h from H

Example (binary) hypothesis classes:
The constant functions, e.g. {true, false}
Decision stumps
All binary functions (decision trees)
Linear binary decision boundaries

NB, Perceptron both learn this class!
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Learning a Target
What do we mean by “learning” a target function?

Older approach: learning in the limit
Insist on exactly identifying target (eventually)
Usually impossible (why?)

Newer approach: just get “close”
Don’t need the correct hypothesis
Only want one which has very low error (approximately correct)
Might draw a really crummy data set
Only require that learning usually works (probable learning)

Probably approximately correct (PAC) learning

Setup:
Fix class H, learner L
Unknown realizable target f
Unknown example distribution D
L gets N examples from D
L picks some h consistent with examples

(Assumes this is both possible and efficient)

Question: sample complexity
How many examples do we need before we know that h is 
probably approximately correct?
Formally: what is the smallest N such that with probability at 
least 1-δ the test error of h will be ε-good?

PAC Learning
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Bounding Failure Probability
What does it take to for a learner to fail?

There has to be a lucky hypothesis
It aces the training data DESPITE being -bad!

How likely is it for an -bad hypothesis to get one example right?

How likely is it for a bad hypothesis to get all N examples right?

How likely that some hypothesis manages this feat of disguise?
At most |H| are bad, and each gets a shot at sneaking by:

Calculating The Sample Bound
So, probability of failure is

PAC learning requires failure to be below at most delta 
(user-supplied)

So, we want

If we solve for N:
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The Sample Bound
Let’s parse this bound!

Says that the number of samples we need depends on
The required epsilon, delta
The size of the hypothesis space
NOT the data distribution D!

Shows formally that simpler hypothesis spaces require 
fewer samples to learn (which we’ve been suggesting all 
along)

Practice: Hypothesis Sizes

Decision stumps over m binary attributes
Number: 4m
Sample complexity: logarithmic in m!

Number of disjunctive hypotheses over m attrs
E.g.: SomePatrons ∨ LittleWait ∨ NoChoice ∨ Hungry
Number:
Sample complexity:
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Practice: Lookup Tables

01111

00111

01011

00011

11101

00101

01001

00001

11110

00110

01010

10010

01100

10100

11000

00000

YX4X3X2X1H = all truth tables 

Question: if there are m attributes, 
what is the size of the complete set 
of hypotheses in f? 

Why is this the same as the 
number of decision trees over m 
attributes (last class)?

Sample complexity?

Bad 
news!

Practice: Linear Decisions
Reminder: (binary) perceptrons learn 
linear separators

Add up the weights of the active features
If large enough, positive class
Otherwise, negative class
Decision boundary is a line / plane / 
hyperplane

So, what’s |H| for 2-D linear 
separators?

Each hypothesis is a line (and a sign)
Number of lines in 2D?
Sample complexity?

0 1
0

1

2

SPAM

HAM
free

m
on

ey

VERY bad 
news!
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Infinite Hypothesis Spaces

With continuous parameters, H is infinite
E.g. perceptron, naïve Bayes
Yet, we never really need infinite samples
Explanation: linear separators can’t represent very many 
behaviors on a fixed training set

Example: N points in a plane
How many classifications can we
actually make, using a threshold?
Only N+1
Most labelings can’t be represented with this H

VC Dimension
Vapnik-Chervonenkis (VC) dimension

A kind of measure of “effective” size of a hypothesis space |H|
Can be finite even in continuous spaces
(You will not need to know the details of this!)

Definition: H shatters a data set T if any labeling of T can given by 
an h in H

Example: points on a line, with H = threshold and positive direction
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Example: Shattering
Example: points on a plane

In general: hyperplanes in Rn can shatter n+1 points

VC Dimension II

Definition: the VC dimension of a hypothesis class H is 
the size of the largest set X it can shatter

Example: VC dimension of the class of linear separators 
in n dimensions is n+1

Example: circles around the origin
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VC-Based Bounds
Remember our PAC bound?

Can show a VC-based bound:

(Details and constants are NOT IMPORTANT)
Modulo details: the log |H| has been replaced with VC(H)
What does this mean (very loosely) for a perceptron over m 
features?
What do you think happens in practice?

Some Things We Won’t Show

VC dimension turns out to be very useful

Many results from learning theory exploit it

Can show generalization bounds, which bound 
the error on future examples using the training 
error and the VC dimension

This is neat stuff (not always directly correlated 
with what works in practice, though)
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Other Bounds

Reset!

So far: sample complexity bounds

Other kinds of bounds:
Mistake bounds (now)
Generalization bounds (never)

Online Learning
Online learning:

Receive examples one at a time
Make a prediction on each one
Learn the label and update hypothesis
Can’t go back
Hopefully, stop making errors at some point

We’ve already seen one online algorithm 
(what)?

Main bound for online: maximum number 
of mistakes (ever!)

Only works if target realizable
In practice, online algorithms usually keep 
making mistakes forever (like any other 
method)
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Learning Disjunctions
Hypothesis space: disjunctions over n positive Boolean 
attributes (features)

Example:
Attributes: SomePatrons, FrenchFood, HasBar, …
Target (WillEat): SomePatrons ∨ LittleWait ∨ NoChoice ∨ Hungry

An algorithm:
Start with all variables in the disjunction
When we make a mistake, throw out any positive variables in 
negative example

Learning Disjunctions
Example:

Hypothesis: FullPatrons ∨ SomePatrons ∨ LittleWait ∨ NoChoice
∨ Hungry ∨ FrenchFood ∨ HasBar ∨ IsWeekend

Example: SomePatrons ∧ LittleWait ∧ FrenchFood : true
Example: FullPatrons ∧ FrenchFood ∧ IsWeekend : false
Example: HasBar ∧ Hungry : true
Example: FullPatrons ∧ HasBar : false

How many mistakes can we possibly make?
Each mistake throws out some variable (why?)
Can make at most n mistakes!  (ever!)
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Winnow
A perceptron-like algorithm

We’ll do the two-class case

Algorithm:
Start with weight 1 on all features
For an example feature vector f(x), we calculate:

If sum > n, output class 1, otherwise 0
If we make a mistake:

Guessed 0 (weights too low) Guessed 1 (weights too high)

Winnow Example

BIAS  :
win   :  
game  :  
vote  :  
match :
the   :   

“win the vote”
“win the match”

“win the game”

POLITICS is the + class
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Winnow Mistake Bound

Assume the target is a sparse disjunction:
k << n variables out of n
E.g. there are k spam words out of n total words
(rarely entirely true in practice)

Can show: total mistakes is O(k log n)

Much better than the previous algorithm!

That’s It For Learning Theory
Hopefully, you’ve gotten a taste of what LT is about!

More sophisticated results take into account:
Unrealizable functions
Noisy labelings
Multiple learners (ensembles)
How to estimate generalization error

What I concretely expect you to take away:
Understand ε-good, PAC learning criterion
Be able to show where the basic bound in |H| comes from
Be able to find the size of a (finite) hypothesis space
Know what online learning and mistake bounds are


