CS 188: Artificial Intelligence Spring 2006

Lecture 13: Clustering and Similarity 2/28/2006

Dan Klein – UC Berkeley

Many slides from either Stuart Russell or Andrew Moore

Today

- Clustering
 - K-means
 - Similarity Measures
 - Agglomerative clustering
- Case-based reasoning
 - K-nearest neighbors
 - Collaborative filtering

Recap: Classification

- Classification systems:
 - Supervised learning
 - Make a rational prediction given evidence
 - We've seen several methods for this
 - Useful when you have labeled data (or can get it)

Clustering

- Clustering systems:
 - Unsupervised learning
 - Detect patterns in unlabeled data
 - E.g. group emails or search results
 - E.g. find categories of customers
 - E.g. detect anomalous program executions
 - Useful when don't know what you're looking for
 - Requires data, but no labels
 - Often get gibberish

Clustering

- Basic idea: group together similar instances
- Example: 2D point patterns
- What could "similar" mean?
 - One option: small (squared) Euclidean distance

$$dist(x,y) = (x-y)^{T}(x-y) = \sum_{i} (x_{i} - y_{i})^{2}$$

K-Means

- An iterative clustering algorithm
 - Pick K random points as cluster centers (means)
 - Alternate:
 - Assign data instances to closest mean
 - Assign each mean to the average of its assigned points
 - Stop when no points' assignments change

K-Means as Optimization

• Consider the total distance to the means:

$$\phi(\{x_i\},\{a_i\},\{c_k\}) = \sum_i \operatorname{dist}(x_i,c_{a_i})$$
 points means assignments

• Each iteration reduces phi

- Two stages each iteration:
 - Update assignments: fix means c, change assignments a
 - Update means: fix assignments a, change means c

Phase I: Update Assignments

For each point, re-assign to closest mean:

$$a_i = \operatorname*{argmin}_k \operatorname{dist}(x_i, c_k)$$

Can only decrease total distance phi!

$$\phi(\lbrace x_i \rbrace, \lbrace a_i \rbrace, \lbrace c_k \rbrace) = \sum_i \operatorname{dist}(x_i, c_{a_i})$$

Phase II: Update Means

• Move each mean to the average of its assigned points:

$$c_k = \frac{1}{|\{i : a_i = k\}|} \sum_{i:a_i = k} x_i$$

- Also can only decrease total distance!
- Why?
- Fun fact: the point y with minimum squared Euclidean distance to a set of points {x} is their mean

Initialization

- K-means is nondeterministic
 - Requires initial means
 - It does matter what you pick!
 - What can go wrong?
 - Various schemes for preventing this kind of thing: variance-based split / merge, initialization heuristics

K-Means Getting Stuck

A local optimum:

K-Means Questions

- Will K-means converge?
 - To a global optimum?
- Will it always find the true patterns in the data?
 - If the patterns are very very clear?
- Will it find something interesting?
- Do people ever use it?
- How many clusters to pick?

Clustering for Segmentation

- Quick taste of a simple vision algorithm
- Idea: break images into manageable regions for visual processing (object recognition, activity detection, etc.)

http://www.cs.washington.edu/research/imagedatabase/demo/kmcluster/

Representing Pixels

- Basic representation of pixels:
 - 3 dimensional color vector <r, g, b>
 - Ranges: r, g, b in [0, 1]
 - What will happen if we cluster the pixels in an image using this representation?
- Improved representation for segmentation:
 - 5 dimensional vector <r, g, b, x, y>
 - Ranges: x in [0, M], y in [0, N]
 - Bigger M, N makes position more important
 - How does this change the similarities?
- Note: real vision systems use more sophisticated encodings which can capture intensity, texture, shape, and so on.

K-Means Segmentation

- Results depend on initialization!
 - Why?

Note: best systems use graph segmentation algorithms

Other Uses of K-Means

- Speech recognition: can use to quantize wave slices into a small number of types (SOTA: work with multivariate continuous features)
- Document clustering: detect similar documents on the basis of shared words (SOTA: use probabilistic models which operate on topics rather than words)

Agglomerative Clustering

- Agglomerative clustering:
 - First merge very similar instances
 - Incrementally build larger clusters out of smaller clusters
- Algorithm:
 - Maintain a set of clusters
 - Initially, each instance in its own cluster
 - Repeat:
 - Pick the two closest clusters
 - Merge them into a new cluster
 - Stop when there's only one cluster left
- Produces not one clustering, but a family of clusterings represented by a dendrogram

Agglomerative Clustering

- How should we define "closest" for clusters with multiple elements?
- Many options
 - Closest pair (single-link clustering)
 - Farthest pair (complete-link clustering)
 - Average of all pairs
 - Distance between centroids (broken)
 - Ward's method (my pick, like kmeans)
- Different choices create different clustering behaviors

Agglomerative Clustering

Complete Link (farthest) vs. Single Link (closest)

 00000000000

0000000000

Back to Similarity

- K-means naturally operates in Euclidean space (why?)
- Agglomerative clustering didn't require any mention of averaging
 - Can use any function which takes two instances and returns a similarity
 - (If your similarity function has the right properties, can adapt kmeans too)
- Kinds of similarity functions:
 - Euclidian (dot product)
 - Weighted Euclidian
 - Edit distance between strings
 - Anything else?

Similarity Functions

- Similarity functions are very important in machine learning
- Topic for next class: kernels
 - Similarity functions with special properties
 - The basis for a lot of advance machine learning (e.g. SVMs)

Case-Based Reasoning

- Similarity for classification
 - Case-based reasoning
 - Predict an instance's label using similar instances
- Nearest-neighbor classification
 - 1-NN: copy the label of the most similar data point
 - K-NN: let the k nearest neighbors vote (have to devise a weighting scheme)
 - Trade-off:
 - Small k gives relevant neighbors
 - Large k gives smoother functions
 - Sound familiar?
- [DEMO]

http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html

Parametric / Non-parametric

- Parametric models:
 - Fixed set of parameters
 - More data means better settings
- Non-parametric models:
 - · Complexity of the classifier increases with data
 - Better in the limit, often worse in the non-limit
- (K)NN is non-parametric

Truth

2 Examples

10 Examples

100 Examples

10000 Examples

Collaborative Filtering

- Ever wonder how online merchants decide what products to recommend to you?
- Simplest idea: recommend the most popular items to everyone
 - Not entirely crazy! (Why)
 - Can do better if you know something about the customer (e.g. what they've bought)
- Better idea: recommend items that similar customers bought
 - A popular technique: collaborative filtering
 - Define a similarity function over customers (how?)
 - Look at purchases made by people with high similarity
 - Trade-off: relevance of comparison set vs confidence in predictions
 - How can this go wrong?

Next Class

- Kernel methods / SVMs
- Basis for a lot of SOTA classification tech