CS 188: Atrtificial Intelligence
Spring 2006

Lecture 14: Kernel Methods
3/2/2006

Dan Klein — UC Berkeley

Today

= Kernels (Similarity Functions)

= Kernelized Perceptron

= Taste of Support Vector Machines

Recap: Nearest-Neighbor

= Nearest neighbor:
= Classify test example based on closest
training example
= Requires a similarity function (kernel)
= Eager learning: extract classifier from data

= Lazy learning: keep data around and predict Truth
from it at test time

2 Examples 10 Examples 100 Examples 10000 Examples

=1

A

Nearest-Neighbor Classification

= Nearest neighbor for digits:
= Take new image
= Compare to all training images ’1
= Assign based on closest example

* Encoding: image is vector of intensities: Q
4 = (0.0 0.0 0.3 0.8 0.7 0.1...0.0)
= What's the similarity function? 0

= Dot product of two images vectors?

sim(z,y) =z -y =) zy;
5

= min = 0 (when?), max =1 (when?)

Basic Similarity

= Similarity based on feature dot products:

sim(z,y) = f(z) - f(y) = >_ fi(2) fi(y)
= |f features are just the pixels:

sim(z,y) =z -y =) _ zy;

1

Invariant Metrics

= Better distances use knowledge about vision
= |nvariant metrics:

= Similarities are invariant under certain transformations
= Rotation, scaling, translation, stroke-thickness...

= E.Q ,1 -}
> o
= 16 x 16 = 256 pixels; a point in 256-dim space
= Small similarity in R2%6 (why?)
= How to incorporate invariance into similarities?

This and next few slides adapted from Xiao Hu, UIUC

Rotation Invariant Metrics

= Each example is now a curve

3l

"3‘ 3 3 in R256

O T = Rotation invariant similarity:
anstormaons of Smmax S(r(?j]i)’ r(E]))
B - -
y Pixel space
= E.g. highest similarity between
/ images’ rotation lines

Tangent Families

T W - H 1.
?‘ g ": 1-j| |‘§l Problems with s’:
Ter e e e = Hard to compute

= Allows large
)’. transformations (6 — 9)

/ = Tangent distance:

"Ll "3 P :{l = 1st order approximation

";::.1 = (1.1 =0 =TX] at Ol’iginal pOintS,
Linear equation for 5 L } " Ea‘Sy tO CompUte
— 3 i = Models small rotations

Template Deformation

= Deformable templates:

. : e
= An “ideal” version of each category 1
= Best-fit to image using min variance | s
= Cost for high distortion of template FI

= Cost for image points being far from distorted template
= Used in many commercial digit recognizers

6 7 8 4

Examples from [Hastie 94]

A Tale of Two Approaches...

= Nearest neighbor-like approaches
» Can use fancy kernels (similarity functions)
» Don't actually get to do explicit learning

= Perceptron-like approaches
» Explicit training to reduce empirical error
» Can't use fancy kernels (why not?)
= Or can you? Let’s find out!

The Perceptron, Again

= Start with zero weights
= Pick up training instances one by one
= Try to classify

c = argmax, we- f(x)
= arg maX. 3 we,; - fi(x)

= |f correct, no change!

= |f wrong: lower score of wrong
answer, raise score of right answer

we = we — f(x)

Wer = wex + f ()

Perceptron Weights

= What is the final value of a weight w_?
= Can it be any real vector?
= No! It's built by adding up inputs.

we =0+ f(x1) — f(zs) + ...
We = Zai,c f(z;)

= Can reconstruct weight vectors (the primal representation)
from update counts (the dual representation)

ac=(a1c ¢ ... Qngc)

Dual Perceptron

= How to classify a new example x?

score(e,a) = we- f(x)
= (Z e f (oz:;)) - f(=)
= %:o:'-i.r: (f(zq) - f(@))
_ L oy K(zg2)

* If someone tells us the value of K for each pair of
examples, never need to build the weight vectors!

Dual Perceptron

= Start with zero counts
= Pick up training instances one by one
= Try to classify X,

c =argmax. >;a; . K(x;,x)

= |f correct, no change!

= |f wrong: lower count of wrong class (for this instance),
raise score of right class (for this instance)

Oéc,n == Oéc,n -1 We — We — f(x)

Ak n — Ak p + 1 Wer = wex + f(x)

Kernelized Perceptron

= What if we had a black box (kernel) which told us the dot
product of two examples x and y?
= Could work entirely with the dual representation
= No need to ever take dot products (“kernel trick”)

score(c,x) = we- f(x)

= Z: ¢ K(mi: :C)

= Like nearest neighbor — work with black-box similarities
= Downside: slow if many examples get nonzero alpha

Kernelized Perceptron Structure

Y =score(c, z)

A = Qe

Kernels: Who Cares?

= So far: a very strange way of doing a very simple
calculation

= “Kernel trick”: we can substitute any* similarity
function in place of the dot product

= |ets us learn new kinds of hypothesis

* Fine print: if your kernel doesn't satisfy certain
technical requirements, lots of proofs break.

E.g. convergence, mistake bounds. In practice,
illegal kernels sometimes work (but not always).

Properties of Perceptrons

= Separability: some parameters get Separable
the training set perfectly correct
* 3+
. L - + &
= Convergence: if the training is - +
separable, perceptron will T +
eventually converge (binary case) =
» Mistake Bound: the maximum Non-Separable
number of mistakes (binary case)
related to the margin or degree of _ *
separability o
istakes < —) *
mistakes < 52 - -

Non-Linear Separators

= Data that is linearly separable (with some noise) works out great:

= But what are we going to do if the dataset is just too hard?

0 X
= How about... mapping data to a higher-dimensional space:

This and next few slides adapted from Ray Mooney, UT

Non-Linear Separators

= General idea: the original feature space can always be
mapped to some higher-dimensional feature space
where the training set is separable:

N .
o fos P x= 00 o
° [] i . ry i ° ' ... ° *

10

Some Kernels

= Kernels implicitly map original vectors to higher
dimensional spaces, take the dot product there, and
hand the result back

» Linear kernel: K(z,2) =2 -2/ =) x;a]
i
= Quadratic kernel: K (z,2') = (z -2’ + 1)
= Zmzmjx;mg + 22%90; 41
L, i
= RBF: infinite dimensional representation

K(z,2') = exp(—|lz — 2'||*)

= Discrete kernels: e.g. string kernels

Support Vector Machines

= Several (related) problems with perceptron
» Can thrash around
= No telling which separator you get
= Once you make an update, can’t retract it

= SVMs address these problems
= Converge to globally optimal parameters
= Good choice of separator (maximum margin)
» Find sparse vectors (dual sparsity)

11

Linear Separators

= Binary classification can be viewed as the task
of separating classes in feature space:

Linear Separators

= Which of the linear separators is optimal?

12

Classification Margin

= Distance from example x; to the separator is r
= Examples closest to the hyperplane are support vectors.
= Margin ¢ of the separator is the distance between support vectors.

Maximum Margin Classification

» Maximizing the margin is good according to
intuition and PAC theory.

» |mplies that only support vectors matter; other
training examples are ignorable.

13

Next Time

= Midterm: good luck!

= Speech Recognition and HMMs

14

