
1

CS 188: Artificial Intelligence
Spring 2006

Lecture 14: Kernel Methods
3/2/2006

Dan Klein – UC Berkeley

Today

Kernels (Similarity Functions)

Kernelized Perceptron

Taste of Support Vector Machines

Recap: Nearest-Neighbor

Nearest neighbor:
Classify test example based on closest
training example
Requires a similarity function (kernel)
Eager learning: extract classifier from data
Lazy learning: keep data around and predict
from it at test time

Truth

2 Examples 10 Examples 100 Examples 10000 Examples

Nearest-Neighbor Classification
Nearest neighbor for digits:

Take new image
Compare to all training images
Assign based on closest example

Encoding: image is vector of intensities:

What’s the similarity function?
Dot product of two images vectors?

min = 0 (when?), max = 1 (when?)

Basic Similarity

Similarity based on feature dot products:

If features are just the pixels:

Invariant Metrics

This and next few slides adapted from Xiao Hu, UIUC

Better distances use knowledge about vision
Invariant metrics:

Similarities are invariant under certain transformations
Rotation, scaling, translation, stroke-thickness…
E.g:

16 x 16 = 256 pixels; a point in 256-dim space
Small similarity in R256 (why?)

How to incorporate invariance into similarities?

2

Rotation Invariant Metrics

Each example is now a curve
in R256

Rotation invariant similarity:

s’=max s(r(), r())

E.g. highest similarity between
images’ rotation lines

Tangent Families

Problems with s’:
Hard to compute
Allows large
transformations (6 → 9)

Tangent distance:
1st order approximation
at original points.

Easy to compute
Models small rotations

Template Deformation

Deformable templates:
An “ideal” version of each category
Best-fit to image using min variance
Cost for high distortion of template
Cost for image points being far from distorted template

Used in many commercial digit recognizers

Examples from [Hastie 94]

A Tale of Two Approaches…

Nearest neighbor-like approaches
Can use fancy kernels (similarity functions)
Don’t actually get to do explicit learning

Perceptron-like approaches
Explicit training to reduce empirical error
Can’t use fancy kernels (why not?)
Or can you? Let’s find out!

The Perceptron, Again
Start with zero weights
Pick up training instances one by one
Try to classify

If correct, no change!
If wrong: lower score of wrong
answer, raise score of right answer

Perceptron Weights
What is the final value of a weight wc?

Can it be any real vector?
No! It’s built by adding up inputs.

Can reconstruct weight vectors (the primal representation)
from update counts (the dual representation)

3

Dual Perceptron
How to classify a new example x?

If someone tells us the value of K for each pair of
examples, never need to build the weight vectors!

Dual Perceptron
Start with zero counts
Pick up training instances one by one
Try to classify xn,

If correct, no change!
If wrong: lower count of wrong class (for this instance),
raise score of right class (for this instance)

Kernelized Perceptron

What if we had a black box (kernel) which told us the dot
product of two examples x and y?

Could work entirely with the dual representation
No need to ever take dot products (“kernel trick”)

Like nearest neighbor – work with black-box similarities
Downside: slow if many examples get nonzero alpha

Kernelized Perceptron Structure

Kernels: Who Cares?

So far: a very strange way of doing a very simple
calculation

“Kernel trick”: we can substitute any* similarity
function in place of the dot product

Lets us learn new kinds of hypothesis

* Fine print: if your kernel doesn’t satisfy certain
technical requirements, lots of proofs break.
E.g. convergence, mistake bounds. In practice,
illegal kernels sometimes work (but not always).

Properties of Perceptrons
Separability: some parameters get
the training set perfectly correct

Convergence: if the training is
separable, perceptron will
eventually converge (binary case)

Mistake Bound: the maximum
number of mistakes (binary case)
related to the margin or degree of
separability

Separable

Non-Separable

4

Non-Linear Separators
Data that is linearly separable (with some noise) works out great:

But what are we going to do if the dataset is just too hard?

How about… mapping data to a higher-dimensional space:

0

0

0

x2

x

x

x

This and next few slides adapted from Ray Mooney, UT

Non-Linear Separators

General idea: the original feature space can always be
mapped to some higher-dimensional feature space
where the training set is separable:

Φ: x→φ(x)

Some Kernels
Kernels implicitly map original vectors to higher
dimensional spaces, take the dot product there, and
hand the result back

Linear kernel:

Quadratic kernel:

RBF: infinite dimensional representation

Discrete kernels: e.g. string kernels

Support Vector Machines

Several (related) problems with perceptron
Can thrash around
No telling which separator you get
Once you make an update, can’t retract it

SVMs address these problems
Converge to globally optimal parameters
Good choice of separator (maximum margin)
Find sparse vectors (dual sparsity)

Linear Separators
Binary classification can be viewed as the task
of separating classes in feature space:

w . x = 0

w . x < 0
w . x > 0

Linear Separators

Which of the linear separators is optimal?

5

Classification Margin
Distance from example xi to the separator is r
Examples closest to the hyperplane are support vectors.
Margin δ of the separator is the distance between support vectors.

r

δ

Maximum Margin Classification
Maximizing the margin is good according to
intuition and PAC theory.
Implies that only support vectors matter; other
training examples are ignorable.

Next Time

Midterm: good luck!

Speech Recognition and HMMs

