CS 188: Artificial Intelligence Spring 2006

Lecture 15: Bayes' Nets
3/9/2006

Dan Klein - UC Berkeley

Outline

- Rest of course:
- Bayes Nets
- Speech Recognition / HMMs
- Reinforcement learning
- Applications: NLP, Vision, Games
- Today:
- Bayes Nets Introduction

Models

- Models are descriptions of how (a portion of) the world works
- Models are always simplifications
- May not account for every variable
- May not account for all interactions
 between variables
- Why worry about probabilistic models?
- We (or our agents) need to reason about unknown variables, given evidence
- Example: explanation (diagnostic reasoning)
- Example: prediction (causal reasoning)
- Example: value of information

Reminder: CSPs

- CSPs were a kind of model
- Describe legal interactions between variables
- Usually we just look for some legal assignment
- But, also can reason using all assignments, or find assignments consistent with evidence
- Key idea of CSPs:
- Model global behavior using local constraints
- Recurring idea in AI: compact local models interact to give efficient, interesting global behavior

$$
\begin{aligned}
& D=\{r e d, \text { green }, \text { blue }\} \\
& W A \neq N T
\end{aligned}
$$

Probabilistic Models

- A probabilistic model is a joint distribution over a set of variables

$$
P\left(X_{1}, X_{2}, \ldots X_{n}\right)
$$

- Given a joint distribution, we can reason about unobserved variables given observations (evidence)
- General form of a query:

- This kind of posterior distribution is also called the belief function of an agent which uses this model

Bayes’ Nets: Big Picture

- Two problems with generic probabilistic models:
- Unless there are only a few variables, the joint is too big to represent explicitly
- Hard to estimate anything empirically about more than a few variables at a time
- Bayes' nets are a technique for describing complex joint distributions (models) using a bunch of simple, local distributions
- We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions
- For about 10 min , we'll be very vague about how these interactions are specified

Graphical Model Notation

- Nodes: variables (with domains)
- Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
- Similar to constraints
- Indicate "direct influence" between variables
- For now: imagine that arrows mean causation

Example: Coin Flips

- N independent coin flips

- No interactions between variables: absolute independence

Example: Traffic

- Variables:
- R: It rains
- T: There is traffic
- Model 1: independence

- Model 2: rain causes traffic
- Why is an agent using model 2 better?

Example: Traffic II

- Let's build a causal graphical model
- Variables
- T: Traffic
- R: It rains
- L: Low pressure
- D: Roof drips
- B: Ballgame
- C: Cavity

Example: Alarm Network

- Variables
- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!

Bayes' Net Semantics

- Let's formalize the semantics of a Bayes' net
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
- A distribution over X, for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

$P\left(X \mid A_{1} \ldots A_{n}\right)$

- CPT: conditional probability table
- Description of a noisy "causal" process

A Bayes net $=$ Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

- Example:

$$
P(\text { cavity, catch, } \neg \text { toothache })
$$

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every full joint
- The topology enforces certain conditional independencies

Example: Coin Flips

-•

$P\left(X_{1}\right)$
h
t

$P\left(X_{2}\right)$

h	0.5
t	0.5

$P\left(X_{n}\right)$	
h	
t	

$$
P(h, h, t, h)=
$$

Example: Traffic

Example: Alarm Network

$P(b, e, \neg a, j, m)=$

Example: Naïve Bayes

- Let's figure out what the Bayes' net for naïve Bayes is:

$$
P\left(y, x_{1}, x_{2} \ldots x_{n}\right)=P(y) P\left(x_{1} \mid y\right) P\left(x_{2} \mid y\right) \ldots P\left(x_{n} \mid y\right)
$$

Example: Traffic II

- Variables
- T: Traffic
- R: It rains
- L: Low pressure
- D: Roof drips
- B: Ballgame

Size of a Bayes' Net

- How big is a joint distribution over N Boolean variables?
- How big is a Bayes net if each node has k parents?
- Both give you the power to calculate $P\left(X_{1}, X_{2}, \ldots X_{n}\right)$
- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also turns out to be faster to answer queries (next class)

Building the (Entire) Joint

- We can take a Bayes' net and build the full joint distribution it encodes

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

- Typically, there's no reason to do this
- But it's important to know you could!
- To emphasize: every BN over a domain implicitly represents some joint distribution over that domain

Example: Traffic

- Basic traffic net
- Let's multiply out the joint

$P(T, R)$

r	t	$3 / 16$
r	$\neg \mathrm{t}$	$1 / 16$
$\neg \mathrm{r}$	t	$6 / 16$
$\neg \mathrm{r}$	$\neg \mathrm{t}$	$6 / 16$

Example: Reverse Traffic

- Reverse causality?

$P P(T, R)$

r	t	$3 / 16$
r	$\neg \mathrm{t}$	$1 / 16$
$\neg \mathrm{r}$	t	$6 / 16$
$\neg \mathrm{r}$	$\neg \mathrm{t}$	$6 / 16$

Causality?

- When Bayes' nets reflect the true causal patterns:
- Often simpler (nodes have fewer parents)
- Often easier to think about
- Often easier to elicit from experts
- BNs need not actually be causal
- Sometimes no causal net exists over the domain
- E.g. consider the variables Traffic and Drips
- End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
- Topology may happen to encode causal structure
- Topology really encodes conditional independencies

Creating Bayes' Nets

- So far, we talked about how any fixed Bayes' net encodes a joint distribution
- Next: how to represent a fixed distribution as a Bayes' net
- Key ingredient: conditional independence
- The exercise we did in "causal" assembly of BNs was a kind of intuitive use of conditional independence
- Now we have to formalize the process
- After that: how to answer queries (inference)

