CS 188: Artificial Intelligence Spring 2006

Lecture 15: Bayes' Nets 3/9/2006

Dan Klein - UC Berkeley

Outline

- Rest of course:
 - Bayes Nets
 - Speech Recognition / HMMs
 - Reinforcement learning
 - Applications: NLP, Vision, Games
- Today:
 - Bayes Nets Introduction

Models

- Models are descriptions of how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables

- Why worry about probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - Example: value of information

Reminder: CSPs

- CSPs were a kind of model
 - Describe legal interactions between variables
 - Usually we just look for some legal assignment
 - But, also can reason using all assignments, or find assignments consistent with evidence
- Key idea of CSPs:
 - Model global behavior using local constraints
 - Recurring idea in AI: compact local models interact to give efficient, interesting global behavior

 $D = \{red, green, blue\}$ $WA \neq NT$

Probabilistic Models

A probabilistic model is a joint distribution over a set of variables

$$P(X_1, X_2, \dots X_n)$$

- Given a joint distribution, we can reason about unobserved variables given observations (evidence)
- General form of a query:

Stuff you care about
$$P(x_q|x_{e_1},\ldots x_{e_k})$$
 Stuff you already know

 This kind of posterior distribution is also called the belief function of an agent which uses this model

Bayes' Nets: Big Picture

- Two problems with generic probabilistic models:
 - Unless there are only a few variables, the joint is too big to represent explicitly
 - Hard to estimate anything empirically about more than a few variables at a time
- Bayes' nets are a technique for describing complex joint distributions (models) using a bunch of simple, local distributions
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we'll be very vague about how these interactions are specified

Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

- Arcs: interactions
 - Similar to constraints
 - Indicate "direct influence" between variables
- For now: imagine that arrows mean causation

Example: Coin Flips

N independent coin flips

No interactions between variables: absolute independence

Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic
- Model 1: independence

- R
- Model 2: rain causes traffic
- Why is an agent using model 2 better?

Example: Traffic II

- Let's build a causal graphical model
- Variables
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame
 - C: Cavity

Example: Alarm Network

- Variables
 - B: Burglary
 - A: Alarm goes off
 - M: Mary calls
 - J: John calls
 - E: Earthquake!

Bayes' Net Semantics

- Let's formalize the semantics of a Bayes' net
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A distribution over X, for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- CPT: conditional probability table

Description of a noisy "causal" process A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example:

 $P(cavity, catch, \neg toothache)$

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every full joint
 - The topology enforces certain conditional independencies

Example: Coin Flips

. . .

$$X_n$$

$$P(X_1)$$
h 0.5
t 0.5

$$P(X_2)$$
h 0.5
t 0.5

. . .

$$P(X_n)$$

$$\begin{array}{|c|c|}\hline h & 0.5 \\\hline t & 0.5 \\\hline \end{array}$$

$$P(h, h, t, h) =$$

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Example: Naïve Bayes

• Let's figure out what the Bayes' net for naïve Bayes is:

$$P(y, x_1, x_2...x_n) = P(y)P(x_1|y)P(x_2|y)...P(x_n|y)$$

Example: Traffic II

- Variables
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame

Size of a Bayes' Net

- How big is a joint distribution over N Boolean variables?
- How big is a Bayes net if each node has k parents?
- Both give you the power to calculate $P(X_1, X_2, ... X_n)$
- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also turns out to be faster to answer queries (next class)

Building the (Entire) Joint

 We can take a Bayes' net and build the full joint distribution it encodes

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- Typically, there's no reason to do this
- But it's important to know you could!
- To emphasize: every BN over a domain implicitly represents some joint distribution over that domain

Example: Traffic

- Basic traffic net
- Let's multiply out the joint

P(T,R)			
r	t	3/16	
r	⊸t	1/16	
⊸r	t	6/16	
⊸r	⊸t	6/16	

Example: Reverse Traffic

Reverse causality?

P(T,R)			
r	t	3/16	
r	⊸t	1/16	
⊸r	t	6/16	
⊸r	⊸t	6/16	

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independencies

Creating Bayes' Nets

- So far, we talked about how any fixed Bayes' net encodes a joint distribution
- Next: how to represent a fixed distribution as a Bayes' net
 - Key ingredient: conditional independence
 - The exercise we did in "causal" assembly of BNs was a kind of intuitive use of conditional independence
 - Now we have to formalize the process
- After that: how to answer queries (inference)