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= Rest of course:
= Bayes Nets
= Speech Recognition / HMMs
= Reinforcement learning
= Applications: NLP, Vision, Games

= Today:
= Bayes Nets Introduction

Models

Models are descriptions of how
(a portion of) the world works — @\?

Models are always simplifications
= May not account for every variable
= May not account for all interactions
between variables

Why worry about probabilistic models?

= We (or our agents) need to reason about unknown variables,
given evidence

= Example: explanation (diagnostic reasoning)
Example: prediction (causal reasoning)
Example: value of information

Reminder: CSPs

= CSPs were a kind of model

= Describe legal interactions between 0 o
variables
Usually we just look for some legal @ "
assignment @ @
But, also can reason using all ‘

assignments, or find assignments o
consistent with evidence

= Key idea of CSPs: @
* Model global behavior using local
constraints
= Recurring idea in Al: compact local
models interact to give efficient,
interesting global behavior

D = {red, green, blue}
WA#NT

Probabilistic Models

A probabilistic model is a joint distribution over a set of
variables

P(X1,Xo,...X3)

Given a joint distribution, we can reason about
unobserved variables given observations (evidence)

General form of a query:

P(zg|zey, ... ze,)

Stuff you Py x Stuff you
care about already know

This kind of posterior distribution is also called the belief
function of an agent which uses this model

Bayes’ Nets: Big Picture

= Two problems with generic probabilistic models:
= Unless there are only a few variables, the joint is too big to
represent explicitly

= Hard to estimate anything empirically about more than a few
variables at a time

= Bayes' nets are a technique for describing complex joint
distributions (models) using a bunch of simple, local
distributions
= We describe how variables locally interact
= Local interactions chain together to give global, indirect
interactions
= For about 10 min, we'll be very vague about how these
interactions are specified




Graphical Model Notation

= Nodes: variables (with domains)
= Can be assigned (observed) or Weather
unassigned (unobserved) o

= Arcs: interactions
= Similar to constraints

= Indicate “direct influence” between C_avny
variables
= For now: imagine that arrows Toothache Cat@
mean causation N

Example: Coin Flips

= N independent coin flips

= No interactions between variables:
absolute independence

Example: Traffic

= Variables:

= R:Itrains e

= T: There is traffic
= Model 1: independence 0
= Model 2: rain causes traffic

= Why is an agent using model 2 better?

Example: Traffic Il

= Let's build a causal graphical model

= Variables
= T: Traffic
= R:Itrains
= L: Low pressure
= D: Roof drips
= B: Ballgame
= C: Cavity

Example: Alarm Network

= Variables
= B: Burglary
= A: Alarm goes off
= M: Mary calls
= J: John calls
= E: Earthquake!

Bayes’ Net Semantics

= Let’s formalize the semantics of a

Bayes’ net @ cee @
= A set of nodes, one per variable X
= A directed, acyclic graph

= A conditional distribution for each node a ‘:@

= A distribution over X, for each combination
of parents’ values

P(X|A1... A
P(Xlay...an) (X141 ")

= CPT: conditional probability table
= Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities




Probabilities in BNs

= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions
= To see what probability a BN gives to a full assignment, multiply
all the relevant conditionals together:

n
P(zq,20,...2,) = || Plzlparents(X;))
i=1
= Example:

P(cavity, catch, -~toothache)

= This lets us reconstruct any entry of the full joint

= Not every BN can represent every full joint
= The topology enforces certain conditional independencies

Example: Coin Flips

P(X1) P(X>2) P(Xn)
h |os h |os5 . h |os5
t 0.5 t 0.5 t 0.5
P(h,h,t,h) =

Only distributions whose variables are absolutely independent
can be represented by a Bayes’ net with no arcs.

Example: Traffic

P(R)
r 1/4 P(r,—t) =
—r 3/4

P(T|R)
r t | 34
—t | 14

©

—r t 1/2
—t 12

Example: Alarm Network

P(B) P(E)

001 Earthquake )™ 9,

Burglary

E |P(ABE)
T T| 95
E
I
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P(be,na,j,m) =

Example: Naive Bayes

= Let's figure out what the Bayes’ net for naive Bayes is:

P(y,z1,%2...xn) = P(y) P(21|y) P(z2]y) . .. P(znly)

Example: Traffic Il

= Variables G
= T: Traffic

= R:Itrains
= L: Low pressure e G
= D: Roof drips

® @

= B: Ballgame




Size of a Bayes’ Net

Building the (Entire) Joint

= How big is a joint distribution over N Boolean variables?

= How big is a Bayes net if each node has k parents?

Both give you the power to calculate P(X), X2,...Xn)

= BNSs: Huge space savings!

= Also easier to elicit local CPTs

= Also turns out to be faster to answer queries (next class)

= We can take a Bayes’ net and build the full joint
distribution it encodes

n
P(z1,29,...20) = [[ P(wi|parents(X;))
i=1

= Typically, there’s no reason to do this
= But it's important to know you could!

= To emphasize: every BN over a domain implicitly
represents some joint distribution over that
domain

Example: Traffic

Example: Reverse Traffic

= Basic traffic net
= Let's multiply out the joint

P(R) P(T,R)
r| o r t | 3/16
—r | 34 r |t | w6
P(T‘R) —r t | 6/16

| —t |ens

r t 3/4
@ —t 1/4

= Reverse causality?

P(T) P(T,R)
° t | 9ne r t | 3/16
—t 7/16 . 4 116
P(RIT) —r t | 6/16
—r —t 6/16
t r 1/3
e —r 2/3
—t r 17
—r 6/7

—r t 1/2
—t 1/2
Causality?

Creating Bayes’ Nets

= When Bayes’ nets reflect the true causal patterns:
= Often simpler (nodes have fewer parents)
= Often easier to think about
= Often easier to elicit from experts

= BNs need not actually be causal
= Sometimes no causal net exists over the domain
= E.g. consider the variables Traffic and Drips
= End up with arrows that reflect correlation, not causation

= What do the arrows really mean?
= Topology may happen to encode causal structure
= Topology really encodes conditional independencies

= So far, we talked about how any fixed Bayes’ net
encodes a joint distribution

= Next: how to represent a fixed distribution as a
Bayes’ net
= Key ingredient: conditional independence

= The exercise we did in “causal” assembly of BNs was
a kind of intuitive use of conditional independence

= Now we have to formalize the process

= After that: how to answer queries (inference)




