CS 188: Artificial Intelligence Spring 2006

Lecture 16: Bayes' Nets II 3/14/2006

Dan Klein - UC Berkeley

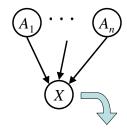
Today

- Last time: Bayes' nets
 - Introduction
 - Semantics (BN to joint distribution)
- Today:
 - Conditional independence
 - How independence determines structure
 - How structure determines independence

Bayes' Net Semantics

- A Bayes' net:
 - A set of nodes, one per variable X
 - A directed, acyclic graph
 - A conditional distribution of each variable conditioned on its parents

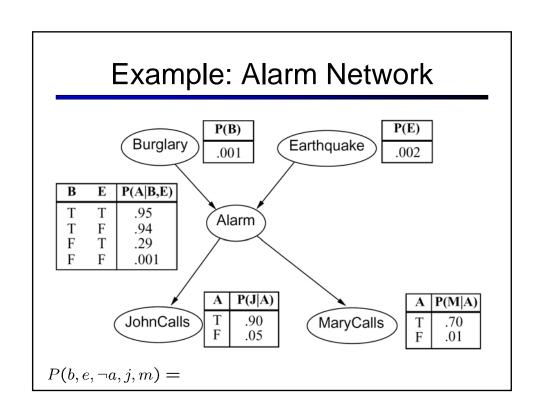
$$P(X|a_1 \ldots a_n)$$



$$P(X|A_1 \ldots A_n)$$

- Semantics:
 - A BN defines a joint probability distribution over its variables:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$



Bayes' Nets

- So far, we talked about how a Bayes' net encodes a joint distribution
- Next: how to answer queries about that distribution
 - Key ingredient: conditional independence
 - Last class: assembled BNs using an intuitive notion of conditional independence as causality
 - Today: formalize these ideas
 - Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)

Conditional Independence

- Reminder: independence
 - X and Y are independent if

$$\forall x, y \ P(x, y) = P(x)P(y) \longrightarrow X \perp \!\!\! \perp Y$$

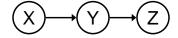
X and Y are conditionally independent given Z

$$\forall x, y, z \ P(x, y|z) = P(x)P(y) - - \rightarrow X \perp \!\!\! \perp Y|Z$$

(Conditional) independence is a property of a distribution

Independence in a BN

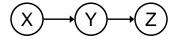
- Important question about a BN:
 - Are two nodes independent given certain evidence
 - If yes, can calculate using algebra (really tedious)
 - If no, can prove with a counter example
 - Example:



- Question: are X and Z independent?
 - Answer: not *necessarily*, we've seen examples otherwise: low pressure causes rain which causes traffic.
 - X can influence Z, Z can influence X
 - Addendum: they could be independent: how?

Causal Chains

This configuration is a "causal chain"



X: Low pressure

Y: Rain

Z: Traffic

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

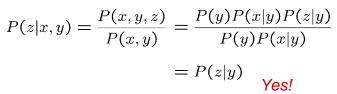
■ Is X independent of Z given Y?

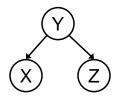
$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)} = \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$
$$= P(z|y)$$

Evidence along the chain "blocks" the influence

Common Cause

- Another basic configuration: two effects of the same cause
 - Are X and Z independent?
 - No, remember the "project due" example
 - Are X and Z independent given Y?





Y: Project due

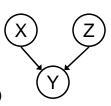
X: Newsgroup busy

Z: Lab full

 Observing the cause blocks influence between effects.

Common Effect

- Last configuration: two causes of one effect (v-structures)
 - Are X and Z independent?
 - Yes: remember the ballgame and the rain causing traffic, no correlation?
 - Still need to prove they must be (homework)
 - Are X and Z independent given Y?
 - No: remember that seeing traffic put the rain and the ballgame in competition?
 - This is backwards from the other cases
 - Observing the effect enables influence between effects.



X: Raining

Z: Ballgame

Y: Traffic

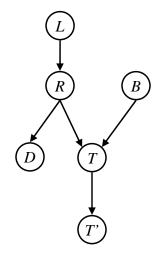
The General Case

- Any complex example can be analyzed using these three canonical cases
- General question: in a given BN, are two variables independent (given evidence)?
- Solution: graph search!

Example

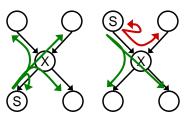
Reachability

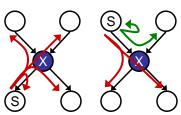
- Recipe: shade evidence nodes
- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent
- Almost works, but not quite
 - Where does it break?
 - Answer: the v-structure at T doesn't count as a link in a path unless shaded

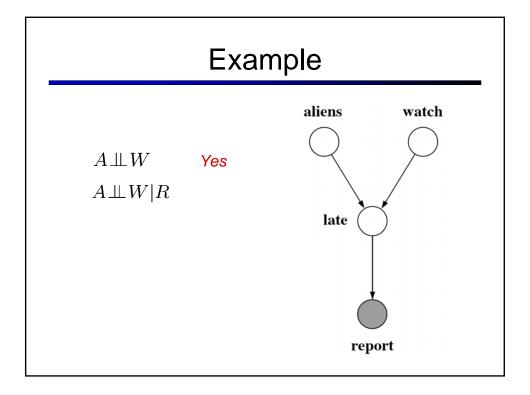


Reachability (the Bayes' ball)

- Correct algorithm:
 - Start at source node
 - Try to reach target with graph search
 - States: node along with previous arc
 - Successor function:
 - Unobserved nodes:
 - To any child
 - To any parent if coming from a child
 - Observed nodes:
 - From parent to parent
 - If you can't reach a node, it's conditionally independent







Example

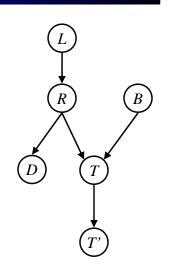
• Questions:

$$L \! \perp \! \! \perp \! \! T' | T$$
 Yes

$$L \! \perp \! \! \! \perp \! \! B$$
 Yes

$$L \! \perp \! \! \perp \! \! B | T$$

$$L \! \perp \! \! \perp \! \! B | T'$$



Example

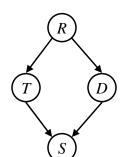
- Variables:
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I'm sad
- Questions:

 $T \perp \!\!\! \perp D$

 $T \perp \!\!\! \perp D | R$

Yes

 $T \perp\!\!\!\perp D | R, S$

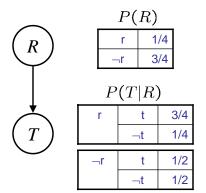


Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology only guaranteed to encode conditional independencies

Example: Traffic

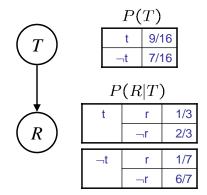
- Basic traffic net
- Let's multiply out the joint



P(T,R)			
r	t	3/16	
r	⊸t	1/16	
⊸r	t	6/16	
⊸r	⊸t	6/16	

Example: Reverse Traffic

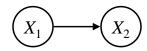
Reverse causality?



P(T,R)			
r	t	3/16	
r	⊸t	1/16	
⊸r	t	6/16	
⊸r	⊸t	6/16	

Example: Coins

 Extra arcs don't prevent representing independence, just allow non-independence



$P(X_1)$		
h	0.5	
t	0.5	

$P(X_2)$		
h	0.5	
t	0.5	

$P(X_1)$		
h	0.5	
t	0.5	
L		

$P(X_2)$	$ X_1\rangle$
h h	0.5
t h	0.5
h t	0.5
t t	0.5

Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- The Bayes' ball algorithm (aka d-separation)
- A Bayes net may have other independencies that are not detectable until you inspect its specific distribution