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Today

= Last time: Bayes’ nets
» [ntroduction
= Semantics (BN to joint distribution)

= Today:
= Conditional independence
= How independence determines structure
= How structure determines independence




Bayes’ Net Semantics

= A Bayes’ net:
= A set of nodes, one per variable X
= A directed, acyclic graph
= A conditional distribution of each variable
conditioned on its parents

P(Xlaq...an)

= Semantics: P(X|A1...Ap)

= A BN defines a joint probability distribution
over its variables:

n
P(x1,0,...@n) = [ P(x;|parents(X;))
i=1

Example: Alarm Network

P(E)

P(B)
001 Earthquake 002

Burglary

B E |P(AB,E)
T T .95

T F| .94

F T .29

F F | .00l

A | PUIA)
F | .05

P(b7ea _|Cl,j, m) ==

b

P(MJA)

.70
01

1




Bayes’ Nets

= So far, we talked about how a Bayes’ net encodes a joint
distribution

= Next: how to answer queries about that distribution
= Key ingredient: conditional independence

* Last class: assembled BNs using an intuitive notion of
conditional independence as causality

= Today: formalize these ideas

= Main goal: answer queries about conditional independence and
influence

= After that: how to answer numerical queries (inference)

Conditional Independence

» Reminder: independence
» X and Y are independent if

Vo,y P(z,y) = P(x)P(y) ---> X1Y
= X and Y are conditionally independent given Z
Va,y,z P(x,ylz) = P(z)P(y) ---» X1Y|Z

= (Conditional) independence is a property of a
distribution




Independence in a BN

= |mportant question about a BN:
= Are two nodes independent given certain evidence
= |f yes, can calculate using algebra (really tedious)
= If no, can prove with a counter example

= Example:

= Question: are X and Z independent?

= Answer: not necessarily, we've seen examples otherwise:
low pressure causes rain which causes traffic.

= X can influence Z, Z can influence X
= Addendum: they could be independent: how?

Causal Chains

» This configuration is a “causal chain”
X: Low pressure

@—’@—'@ Y: Rain

Z: Traffic
P(z,y,z) = P(z)P(y|z) P(z|y)

» |s X independent of Z given Y?

P(z,y,2) _ P(z)P(ylz) P(zly)
P(z,y) P(z)P(y|x)

= P(zly) Yes!

P(z|lz,y) =

» Evidence along the chain “blocks” the influence




Common Cause

= Another basic configuration: two
effects of the same cause

= Are X and Z independent?
= No, remember the “project due” example
= Are X and Z independent given Y?

P(x,y,2) — P(y)P(z|y) P(z|y) Y: Project due

P(zlz,y) =
P(z,y) P(y)P(x|y) X: Newsgroup
busy
=P .
(z[y) Yes! Z: Lab full

= Observing the cause blocks
influence between effects.

Common Effect

= Last configuration: two causes of
one effect (v-structures)

= Are X and Z independent?

= Yes: remember the ballgame and the rain
causing traffic, no correlation?

= Still need to prove they must be (homework)
= Are X and Z independent given Y?

. . . X: Raining
= No: remember that seeing traffic put the rain
and the ballgame in competition? Z: Ballgame
» This is backwards from the other cases Y: Traffic

= Observing the effect enables influence
between effects.




The General Case

= Any complex example can be analyzed
using these three canonical cases

= General question: in a given BN, are two
variables independent (given evidence)?

= Solution: graph search!

Example




Reachability

= Recipe: shade evidence nodes G

= Attempt 1: if two nodes are
connected by an undirected path
not blocked by a shaded node, e e
they are conditionally independent

= Almost works, but not quite Q 0

= Where does it break?

= Answer: the v-structure at T doesn’t
count as a link in a path unless shaded

Reachability (the Bayes’ ball)

= Correct algorithm:
= Start at source node
= Try to reach target with graph
search
= States: node along with
previous arc

= Successor function:

= Unobserved nodes:
= To any child
= To any parent if coming from a
child
= Observed nodes:
= From parent to parent
= If you can’t reach a node, it's

conditionally independent




Example

aliens watch

AlLlW Yes
AULW|R

late

report

Example

= Questions: (L)
LILT|T Yes
LB Yes
LALB|T

L1 B|T’

LUB|IT,R Yes




Example

= Variables:
= R: Raining (R)
= T: Traffic

» D: Roof drips ° Q

» S: I'm sad
= Questions: e
T D
T1.D|R Yes

T1D|R,S

Causality?

= When Bayes’ nets reflect the true causal patterns:
= Often simpler (nodes have fewer parents)
= Often easier to think about
= Often easier to elicit from experts

= BNs need not actually be causal
= Sometimes no causal net exists over the domain
= E.g. consider the variables Traffic and Drips
= End up with arrows that reflect correlation, not causation

= What do the arrows really mean?
= Topology may happen to encode causal structure
= Topology only guaranteed to encode conditional independencies




Example: Traffic

= Basic traffic net

= Let’s multiply out the joint
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Example: Reverse Traffic

= Reverse causality?
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Example: Coins

» Extra arcs don’t prevent representing
independence, just allow non-independence

OO

P(X1) P(X5) P(X1)  P(X2|X1)
h | 05 h |05 h | 05 hih | 05
t 0.5 t 0.5 t 0.5 t/h | 05
hit | 05
t|t | 05

Summary

Bayes nets compactly encode joint distributions

Guaranteed independencies of distributions can
be deduced from BN graph structure

The Bayes’ ball algorithm (aka d-separation)

A Bayes net may have other independencies
that are not detectable until you inspect its
specific distribution
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