CS 188: Artificial Intelligence Spring 2006

Lecture 17: Bayes' Nets III 3/16/2006

Dan Klein - UC Berkeley

Today

- Last time:
- Bayes nets
- Conditional independence
- Today:
- More conditional independence
- Inference to answer queries

Reachability (the Bayes' Ball)

- Correct algorithm:
- Start at source node
- Try to reach target by search
- States: node, along with previous arc
- Successor function:
- Unobserved nodes:
- To any child
- To any parent if coming from a child (or start)
- Observed nodes:
- From parent to parent
- If you can't reach a node, it's conditionally independent of the start node

Example

$L \Perp T^{\prime} \mid T$	Yes
$L \Perp B$	Yes
$L \Perp B \mid T$	
$L \Perp B \mid T^{\prime}$	

Example

- Variables:
- R: Raining
- T: Traffic
- D: Roof drips
- S: I'm sad
- Questions:
$T \Perp D$

$T \Perp D \mid R \quad$ Yes
$T \Perp D \mid R, S$

Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- The Bayes' ball algorithm (aka d-separation)
- A Bayes net may have other independencies that are not detectable until you inspect its specific distribution

Inference

- Inference: calculating some statistic from a joint probability distribution
- Examples:
- Posterior marginal probability:

$$
P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right)
$$

- Most likely explanation:

$$
\operatorname{argmax}_{q} P\left(Q=q \mid E_{1}=e_{1} \ldots\right)
$$

Reminder: Alarm Network

Atomic Inference

- Given unlimited time, inference in BNs is easy
- Recipe:
- State the marginal probabilities you want
- Figure out ALL the atomic probabilities you need
- Calculate and combine them
- Example:

$$
P(b \mid j, m)=\frac{P(b, j, m)}{P(j, m)}
$$

Example

$$
\begin{aligned}
& P(b \mid j, m)=\frac{P(b, j, m)}{P(j, m)} \\
& P(b, j, m)= P(b, e, a, j, m)+ \\
& P(b, \bar{e}, a, j, m)+ \\
& P(b, e, \bar{a}, j, m)+ \\
& P(b, \bar{e}, \bar{a}, j, m) \\
&=\sum_{e, a} P(b, e, a, j, m)
\end{aligned}
$$

Example

$$
\begin{aligned}
& P(b, j, m)= \\
& \quad P(b) P(e) P(a \mid b, e) P(j \mid a) P(m \mid a)+ \\
& P(b) P(e) P(\bar{a} \mid b, e) P(j \mid \bar{a}) P(m \mid \bar{a})+ \\
& P(b) P(\bar{e}) P(a \mid b, \bar{e}) P(j \mid a) P(m \mid a)+ \\
& P(b) P(\bar{e}) P(\bar{a} \mid b, \bar{e}) P(j \mid \bar{a}) P(m \mid \bar{a})
\end{aligned}
$$

Example

$$
\begin{aligned}
& P(b \mid j, m)=\frac{P(b, j, m)}{P(j, m)} \\
& P(b, j, m)=\sum_{e, a} P(b, e, a, j, m) \\
& P(\bar{b}, j, m)=\sum_{e, a} P(\bar{b}, e, a, j, m) \\
& \binom{P(b, j, m)}{P(\bar{b}, j, m)} \xrightarrow{\text { Normalize }}\binom{P(b \mid j, m)}{P(\bar{b} \mid j, m)}
\end{aligned}
$$

Inference by Enumeration

- Atomic inference is extremely slow!
- Slightly clever way to save work:
- Move the sums as far right as possible
- Example:

$$
\begin{aligned}
& P(b, j, m)=\sum_{e, a} P(b, e, a, j, m) \\
& \quad=\sum_{e, a} P(b) P(e) P(a \mid b, e) P(j \mid a) P(m \mid a) \\
& \quad=P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(j \mid a) P(m \mid a)
\end{aligned}
$$

Example

$$
\left.\left.\begin{array}{rl}
P(b, j, m)= & P(b) P(e) P(a \mid b, e) P(j \mid a) P(m \mid a)+ \\
& P(b) P(e) P(\bar{a} \mid b, e) P(j \mid \bar{a}) P(m \mid \bar{a})+ \\
& P(b) P(\bar{e}) P(a \mid b, \bar{e}) P(j \mid a) P(m \mid a)+
\end{array}\right] \begin{array}{rl}
\oplus(b) P(\bar{e}) P(\bar{a} \mid b, \bar{e}) P(j \mid \bar{a}) P(m \mid \bar{a})
\end{array}\right\} \begin{aligned}
P(e) \begin{cases}P(a \mid b, e) & P(j \mid a) P(m \mid a) \\
P(\bar{a} \mid b, e) & P(j \mid \bar{a}) P(m \mid \bar{a})\end{cases} \\
P(\bar{e}) \begin{cases}P(a \mid b, \bar{e}) & P(j \mid a) P(m \mid a) \\
P(\bar{a} \mid b, \bar{e}) & P(j \mid \bar{a}) P(m \mid \bar{a})\end{cases}
\end{aligned}
$$

Evaluation Tree

- View the nested sums as a computation tree:

- Still repeated work: calculate $P(m \mid a) P(j \mid a)$ twice, etc.

Variable Elimination: Idea

- Lots of redundant work in the computation tree!
- We can save time if we cache all partial results
- This is the basic idea behind variable elimination

Basic Objects

- Initial factors are local CPTs
$\underbrace{P(B)}_{f_{B}(B)} \underbrace{P(J \mid A)}_{f_{J}(A, J)} \underbrace{P(A \mid B, E)}_{f_{A}(A, B, E)}$
- During elimination, create new factors
- Anatomy of a factor: \qquad

4 numbers, one for each value of D and E

Argument variables, always nonevidence variables

Basic Operations

- First basic operation: join factors
- Combining two factors:
- Just like a database join
- Build a factor over the union of the domains
- Example:

$$
\begin{gathered}
f_{1}(A, B) \times f_{2}(B, C) \longleftrightarrow f_{3}(A, B, C) \\
f_{3}(a, b, c)=f_{1}(a, b) \cdot f_{2}(b, c) \\
" P(a, b \mid c)=P(a \mid b) \cdot P(b \mid c) "
\end{gathered}
$$

Basic Operations

- Second basic operation: marginalization
- Take a factor and sum out a variable
- Shrinks a factor to a smaller one
- A projection operation
- Example:

$$
\begin{aligned}
f_{\bar{A} B}(b) & =\sum_{a} f_{A B}(a, b) \\
" P(b) & =\sum_{a} P(a, b) "
\end{aligned}
$$

Example

$$
\begin{aligned}
& P(b, j, m) \\
&=\underbrace{P(b)}_{B} \sum_{e} \underbrace{P(e)}_{E} \sum_{a} \underbrace{P(a \mid b, e)}_{A} \underbrace{P(j \mid a)}_{J} \underbrace{P(m \mid a)}_{M} \\
&=f_{B}(b) \sum_{e} f_{E}(e) \sum_{a} f_{A}(a, b, e) f_{J}(a) f_{M}(a) \\
&=f_{B}(b) \sum_{e} f_{E}(e) \sum_{a} f_{A J M}(a, b, e) \\
&=f_{B}(b) \sum_{e} f_{E}(e) f_{\bar{A} J M}(b, e)
\end{aligned}
$$

Example

$$
\begin{aligned}
& P(b, j, m) \\
& \quad=f_{B}(b) \sum_{e} f_{E}(e) f_{\bar{A} J M}(b, e) \\
&= f_{B}(b) \sum_{e} f_{\bar{A} E J M}(b, e) \\
&= f_{B}(b) f_{\bar{A} \bar{E} J M}(b) \\
&= f_{\bar{A} B \bar{E} J M}(b)
\end{aligned}
$$

General Variable Elimination

- Query: $P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right)$
- Start with initial factors:
- Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
- Pick a hidden variable H
- Join all factors mentioning H
- Project out H
- Join all remaining factors and normalize

Example

$P(B \mid j, m) \propto P(B, j, m)$
$\underbrace{P(B)}_{f_{B}(B)} \underbrace{P(E)}_{f_{E}(E)} \underbrace{P(A \mid B, E)}_{f_{A}(A, B, E)} \underbrace{P(j \mid A)}_{f_{J}(A)} \underbrace{P(m \mid A)}_{f_{M}(A)}$

Choose A

$$
\begin{aligned}
& f_{A}(A, B, E) \\
& \begin{array}{l}
f_{J}(A) \\
f_{M}(A)
\end{array} \stackrel{x}{ } f_{A J M}(A, B, E) \llbracket f_{\bar{A} J M}(B, E) \\
& f_{B}(B) \quad f_{E}(E) \quad f_{\bar{A} J M}(B, E)
\end{aligned}
$$

Example

Choose E

$$
\begin{aligned}
& \begin{array}{c}
f_{E}(E) \\
f_{\bar{A}, J M}(B, E) \quad \square \searrow
\end{array} f_{\bar{A} E J M}(B, E) \quad \boxed{\sum} \quad f_{\bar{A} \bar{E} J M}(B) \\
& f_{B}(B) \quad f_{\bar{A} \bar{E} . J M}(B)
\end{aligned}
$$

Finish

