CS 188: Artificial Intelligence Spring 2006

Lecture 17: Bayes' Nets III 3/16/2006

Dan Klein - UC Berkeley

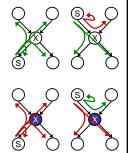
Today

- Last time:
 - Bayes nets
 - Conditional independence
- Today:
 - More conditional independence
 - Inference to answer queries

Reachability (the Bayes' Ball)

- Correct algorithm:
 - Start at source node
 - Try to reach target by search
 - States: node, along with
 - Successor function:

 - Unobserved nodes:
 To any child
 To any parent if coming from a child (or start)
 - Observed nodes:
 From parent to parent
 - If you can't reach a node, it's conditionally independent of the start node



Example

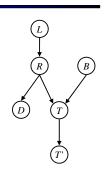
Yes Yes

 $L \perp \!\!\! \perp B | T$

 $L \perp \!\!\! \perp B | T'$

 $L \perp \!\!\! \perp T' | T$

 $L \bot\!\!\!\bot B$



Example

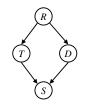
Yes

- Variables:
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I'm sad
- Questions:

 $T \! \perp \!\!\! \perp \!\!\! D$

 $T \perp \!\!\! \perp D | R$

 $T \perp\!\!\!\perp D | R, S$



Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- The Bayes' ball algorithm (aka d separation)
- A Bayes net may have other independencies that are not detectable until you inspect its specific distribution

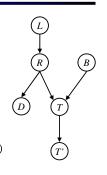
Inference

- Inference: calculating some statistic from a joint probability distribution
- Examples:
 - Posterior marginal probability:

$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

Most likely explanation:

$$\operatorname{argmax}_q P(Q=q|E_1=e_1\ldots)$$



Atomic Inference

- Given unlimited time, inference in BNs is easy
- Recipe:
 - State the marginal probabilities you want
 - Figure out ALL the atomic probabilities you need
 - Calculate and combine them
- Example:

$$P(b|j,m) = \frac{P(b,j,m)}{P(j,m)}$$

Example

$$P(b|j,m) = \frac{P(b,j,m)}{P(j,m)}$$
 B (E)
$$P(b,j,m) = P(b,e,a,j,m) + P(b,e,\bar{a},j,m) + P(b,e,\bar{a},j,m) + P(b,\bar{e},\bar{a},j,m)$$
 Where did we use the BN structure?
$$= \sum_{e,a} P(b,e,a,j,m)$$
 We didn't!

Example

$$P(b,j,m) = P(b)P(e)P(a|b,e)P(j|a)P(m|a) + P(b)P(e)P(\bar{a}|b,e)P(j|\bar{a})P(m|\bar{a}) + P(b)P(\bar{e})P(a|b,\bar{e})P(j|a)P(m|a) +$$

 $P(b)P(\bar{e})P(\bar{a}|b,\bar{e})P(j|\bar{a})P(m|\bar{a})$

$$P(b|j,m) = \frac{P(b,j,m)}{P(j,m)}$$

$$P(b,j,m) = \sum_{e,a} P(b,e,a,j,m)$$

$$P(\bar{b},j,m) = \sum_{e,a} P(\bar{b},e,a,j,m)$$

$$\begin{pmatrix} P(b,j,m) \\ P(\bar{b},j,m) \end{pmatrix}$$
Normalize
$$\begin{pmatrix} P(b|j,m) \\ P(\bar{b}|j,m) \\ P(\bar{b}|j,m) \end{pmatrix}$$

Example

Inference by Enumeration

- Atomic inference is extremely slow!
- Slightly clever way to save work:
 - Move the sums as far right as possible
 - Example:

$$P(b, j, m) = \sum_{e,a} P(b, e, a, j, m)$$

$$= \sum_{e,a} P(b)P(e)P(a|b, e)P(j|a)P(m|a)$$

$$= P(b)\sum_{e} P(e)\sum_{a} P(a|b, e)P(j|a)P(m|a)$$

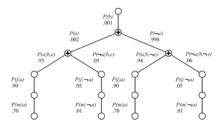
Example

$$P(b,j,m) = P(b)P(e)P(a|b,e)P(j|a)P(m|a) + P(b)P(e)P(\bar{a}|b,e)P(j|\bar{a})P(m|\bar{a}) + P(b)P(\bar{e})P(a|b,\bar{e})P(j|a)P(m|a) + P(b)P(\bar{e})P(\bar{a}|b,\bar{e})P(j|\bar{a})P(m|\bar{a})$$

$$P(b) \begin{cases} P(e) & \begin{cases} P(a|b,e) & P(j|a)P(m|a) \\ P(\overline{a}|b,e) & P(j|\overline{a})P(m|\overline{a}) \end{cases} \\ P(\overline{e}) & \begin{cases} P(a|b,\overline{e}) & P(j|a)P(m|a) \\ P(\overline{a}|b,\overline{e}) & P(j|\overline{a})P(m|\overline{a}) \end{cases} \end{cases}$$

Evaluation Tree

• View the nested sums as a computation tree:



• Still repeated work: calculate P(m | a) P(j | a) twice, etc.

Variable Elimination: Idea

- Lots of redundant work in the computation tree!
- We can save time if we cache all partial results
- This is the basic idea behind variable elimination

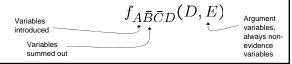
Basic Objects

- Track objects called factors
- Initial factors are local CPTs

$$P(B)$$
 $P(J|A)$ $P(A|B,E)$ $P(A|B,E)$

- During elimination, create new factors
- Anatomy of a factor:

4 numbers, one for each value of D and E



Basic Operations

- First basic operation: join factors
- Combining two factors:
- Just like a database join
- Build a factor over the union of the domains
- Example:

$$f_1(A,B) \times f_2(B,C) \longrightarrow f_3(A,B,C)$$

 $f_3(a,b,c) = f_1(a,b) \cdot f_2(b,c)$
" $P(a,b|c) = P(a|b) \cdot P(b|c)$ "

Basic Operations

- Second basic operation: marginalization
- Take a factor and sum out a variable
 - · Shrinks a factor to a smaller one
 - A projection operation
- Example:

$$f_{\bar{A}B}(b) = \sum_{a} f_{AB}(a,b)$$

"
$$P(b) = \sum_{a} P(a, b)$$
"

Example

$$=\underbrace{P(b)}_{B} \sum_{e} \underbrace{P(e)}_{E} \sum_{a} \underbrace{P(a|b,e)}_{A} \underbrace{P(j|a)}_{J} \underbrace{P(m|a)}_{M}$$

$$= f_B(b) \sum_e f_E(e) \sum_a f_A(a, b, e) f_J(a) f_M(a)$$

$$= f_B(b) \sum_e f_E(e) \sum_a f_{AJM}(a, b, e)$$

$$= f_B(b) \sum_e f_E(e) f_{\bar{A}JM}(b, e)$$

Example

$$= f_B(b) \sum_e f_E(e) f_{\bar{A}JM}(b, e)$$

$$= f_B(b) \sum_e f_{\bar{A}EJM}(b,e)$$

$$= f_B(b) f_{\bar{A}\bar{E}JM}(b)$$

$$=f_{\bar{A}B\bar{E}JM}(b)$$

General Variable Elimination

- Query: $P(Q|E_1 = e_1, \dots E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Project out H
- Join all remaining factors and normalize

Example

$$P(B|j,m) \propto P(B,j,m)$$

Choose A

$$f_A(A,B,E)$$

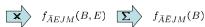
$$f_B(B)$$
 $f_E(E)$ $f_{\bar{A}JM}(B,E)$

Example

 $f_B(B)$ $f_E(E)$ $f_{\bar{A}JM}(B,E)$

Choose E

 $f_E(E)$ $f_{\bar{A}JM}(B,E)$



 $f_{\bar{A}\bar{E}JM}(B)$

Finish

$$f_B(B)$$

 $f_{\bar{A}\bar{E}JM}(B)$

 $f_B(B)$

