CS 188: Artificial Intelligence Spring 2006

Lecture 18: HMMs
3/21/2006

Dan Klein - UC Berkeley

Today

- Last time
- Bayes nets
- Answering queries with variable elimination
- Today:
- Reasoning over time
- Markov processes
- Hidden Markov models

Reasoning over Time

- Often, we want to reason about a sequence of observations
- Speech recognition
- Robot localization
- User attention
- Need to introduce time into our models
- Basic approach: hidden Markov models (HMMs)
- More general: dynamic Bayes' nets

Conditional Independence

- Basic conditional independence:
- Past and future independent of the present
- Each time step only depends on the previous
- This is called the (first order) Markov property

Markov Models

- A Markov model is a chain sructured BN
- Each node is identically distributed (stationarity)
- Value of X at a given time is called the state
- As a BN:

$$
\begin{aligned}
\left(X_{1}\right) & \rightarrow X_{2} \rightarrow\left(X_{3}\right) \rightarrow X_{4} \rightarrow \\
P\left(X_{1}\right) & P\left(X \mid X_{-1}\right)
\end{aligned}
$$

- Parameters: called transition probabilities, specify how the state evolves over time (also, initial probs)

Example

- Weather:
- States: $\mathrm{X}=$ \{rain, sun $\}$
- Transitions

- Initial distribution: 1.0 sun
- What's the probability distribution after one step?
$P\left(X_{2}=\right.$ sun $)=P\left(X_{2}=\operatorname{sun} \mid X_{1}=\right.$ sun $) P\left(X_{1}=\right.$ sun $)+$
$P\left(X_{2}=\operatorname{sun} \mid X_{1}=\right.$ rain $) P\left(X_{1}=\right.$ rain $)$
$0.9 \cdot 1.0+0.1 \cdot 0.0=0.9$

Mini-Forward Algorithm

- Question: probability of being in state x at time t?
- Slow answer:
- Enumerate all sequences of length t which end in s
- Add up their probabilities
- Better answer: cached incremental belief update

$$
\begin{aligned}
& P\left(x_{t}\right)=\sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) P\left(x_{t-1}\right) \\
& P\left(x_{1}\right)=\text { known } \quad \text { Forward simulation }
\end{aligned}
$$

Stationary Distributions

- If we simulate the chain long enough:
- What happens?
- Uncertainty accumulates
- Eventually, we have no idea what the state is!
- Stationary distributions:
- For most chains, the distribution we end up in is independent of the initial distribution
- Called the stationary distribution of the chain
- Usually, can only predict a short time out

Web Link Analysis

- PageRank over a web graph
- Each web page is a state
- Initial distribution: uniform over pages
- Transitions:
- With prob. c, uniform jump to a
random page (solid lines)
With prob. 1-c, follow a random

outlink (dotted lines)
- Stationary distribution
- Will spend more time on highly reachable pages
- E.g. many ways to get to the Acrobat Reader download page!
- Somewhat robust to link spam
- Google 1.0 returned pages containing your keywords in decreasing rank, now all search engines use link analysis along with many other factors

Most Likely Explanation

Mini-Viterbi Algorithm

- Better answer: cached incremental updates

- Define: $m_{t}[x]=\max _{x_{1}: 1-1} P\left(x_{1: t-1}, x\right)$

$$
a_{t}[x]=\underset{x_{11: t-1}}{\arg \max } P\left(x_{1: t-1}, x\right)
$$

- Read best sequence off of m and a vectors

$$
m_{1}[x]=P\left(x_{1}\right)
$$

Hidden Markov Models

- Markov chains not so useful for most agents
- Eventually you don't know anything anymore
- Need observations to update your beliefs
- Hidden Markov models (HMMs)
- Underlying Markov chain over states S
- You observe outputs (effects) at each time step
- As a Bayes' net:

Conditional Independence

- HMMs have two important independence properties:
- Markov hidden process, future depends on past via the present
- Current observation independent of all else given current state

- Quiz: does this mean that observations are independent given no evidence? Why? [No, correlated by the hidden state]

Forward Algorithm

- Can ask the same questions for HMMs as Markov chains
- Given current belief state, how to update with evidence?
- This is called monitoring or filtering
- Formally, we want: $P\left(X_{t}=x_{t} \mid e_{1: t}\right)$

$$
\begin{aligned}
P\left(x_{t} \mid e_{1: t}\right) & \propto P\left(x_{t}, e_{1: t}\right) \\
& =\sum_{x_{t-1}} P\left(x_{t-1}, x_{t}, e_{1: t}\right) \\
& =\sum_{x_{t-1}} P\left(x_{t-1}, e_{1: t-1}\right) P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right) \\
& =P\left(e_{t} \mid x_{t}\right) \sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) P\left(x_{t-1}, e_{1: t-1}\right)
\end{aligned}
$$

Example

$P\left(x_{t} \mid e_{1: t}\right) \propto f_{l}\left[x_{t}\right]=P\left(x_{l}, \epsilon_{1: t}\right)$

$$
f_{t}\left[x_{t}\right]=P\left(e_{t} \mid x_{t}\right) \sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) f_{t-1}\left[x_{t-1}\right]
$$

Viterbi Algorithm
- Question: what is the most likely state sequence given
the observations?
- Slow answer: enumerate all possibilities
- Better answer: cached incremental version
$x_{1: T}^{*}=\underset{x_{1: T}}{\arg \max _{P} P\left(x_{1: T} \mid e_{1: T} ;\right.}$
$m_{t}\left[x_{t}\right]$

