CS 188: Artificial Intelligence Spring 2006

Lecture 19: Speech Recognition 3/23/2006

Dan Klein - UC Berkeley

Many slides from Dan Jurafsky

Speech in an Hour

- Speech input is an acoustic wave form

Spectral Analysis

- Frequency gives pitch; amplitude gives volume
- sampling at $\sim 8 \mathrm{kHz}$ phone, $\sim 16 \mathrm{kHz}$ mic (kHz=1000 cycles/sec)

- Fourier transform of wave displayed as a spectrogram
- darkness indicates energy at each frequency

Acoustic Feature Sequence

- Time slices are translated into acoustic feature vectors (~39 real numbers per slice)

- Now we have to figure out a mapping from sequences of acoustic observations to words.

The Speech Recognition Problem

- We want to predict a sentence given an acoustic sequence:

$$
s^{*}=\arg \max P(s \mid A)
$$

- The noisy channel approach:
- Build a generative model of production (encoding)

$$
P(A, s)=P(s) P(A \mid s)
$$

- To decode, we use Bayes' rule to write

$$
\begin{aligned}
s^{*} & =\underset{s}{\arg \max } P(s \mid A) \\
& =\underset{s}{\arg \max } P(s) P(A \mid s) / P(A) \\
& =\arg \max P(s) P(A \mid s)
\end{aligned}
$$

- Now, we have to find a sentence maximizing this product
- Why is this progress?

Other Noisy-Channel Processes

- Handwriting recognition
$P($ text \mid strokes $) \propto P($ text $) P($ strokes \mid text $)$
- OCR
$P($ text \mid pixels $) \propto P($ text $) P($ pixels \mid text $)$
- Spelling Correction
$P($ text \mid typos $) \propto P($ text $) P($ typos \mid text $)$
- Translation?
$P($ english \mid french $) \propto P($ english $) P($ french \mid english $)$

Digitizing Speech

Thanks to Bryan Pellom for this slide!

She just had a baby

- What can we learn from a wavefile?
- Vowels are voiced, long, loud
- Length in time = length in space in waveform picture
- Voicing: regular peaks in amplitude
- When stops closed: no peaks: silence.
- Peaks = voicing: . 46 to .58 (vowel [iy], from second .65 to .74 (vowel [ax]) and so on
- Silence of stop closure (1.06 to 1.08 for first [b], or 1.26 to 1.28 for second [b])
- Fricatives like [sh] intense irregular pattern; see . 33 to . 46

Examples from Ladefoged

pad

Simple Periodic Sound Waves

- Y axis: Amplitude = amount of air pressure at that point in time
- Zero is normal air pressure, negative is rarefaction
- X axis: time. Frequency = number of cycles per second.
- Frequency = 1/Period
- 20 cycles in .02 seconds $=1000$ cycles/second $=1000 \mathrm{~Hz}$

Adding $100 \mathrm{~Hz}+1000 \mathrm{~Hz}$ Waves

Spectrum

Frequency components (100 and 1000 Hz) on x -axis

Part of [ae] from "had"

- Note complex wave repeating nine times in figure
- Plus smaller waves which repeats 4 times for every large pattern
- Large wave has frequency of 250 Hz (9 times in . 036 seconds)
- Small wave roughly 4 times this, or roughly 1000 Hz
- Two little tiny waves on top of peak of 1000 Hz waves

Back to Spectra

- Spectrum represents these freq components
- Computed by Fourier transform, algorithm which separates out each frequency component of wave.

- x-axis shows frequency, y-axis shows magnitude (in decibels, a log measure of amplitude)
- Peaks at 930 Hz, 1860 Hz, and 3020 Hz.

Mel Freq. Cepstral Coefficients

- Do FFT to get spectral information
- Like the spectrogram/spectrum we saw earlier
- Apply Mel scaling
- Linear below 1 kHz , log above, equal samples above and below 1 kHz
- Models human ear; more sensitivity in lower freqs
- Plus Discrete Cosine Transformation

Final Feature Vector

- 39 (real) features per 10 ms frame:
- 12 MFCC features
- 12 Delta MFCC features
- 12 Delta-Delta MFCC features
- 1 (log) frame energy
- 1 Delta (log) frame energy
- 1 Delta-Delta (log frame energy)
- So each frame is represented by a 39D vector
- For your projects:
- We'll just use two frequencies: the first two formants

Why these Peaks?

- Articulatory facts:
- Vocal cord vibrations create harmonics
- The mouth is a selective amplifier
- Depending on shape of mouth, some harmonics are amplified more than others

Vowel [i] sung at successively higher pitch.

Figures from Ratree Wayland slides from his website

Deriving Schwa

- Reminder of basic facts about sound waves
- $f=c / \lambda$
- c = speed of sound (approx 35,000 cm/sec)
- A sound with $\lambda=10$ meters: $f=35 \mathrm{~Hz}(35,000 / 1000)$
- A sound with $\lambda=2$ centimeters: $f=17,500 \mathrm{~Hz}(35,000 / 2)$

Resonances of the vocal tract

- The human vocal tract as an open tube

Closed end
Open end
\qquad
Length 17.5 cm .

- Air in a tube of a given length will tend to vibrate at resonance frequency of tube.
- Constraint: Pressure differential should be maximal at (closed) glottal end and minimal at (open) lip end.

(a)

Computing the 3 Formants of Schwa

- Let the length of the tube be L
- $F_{1}=c / \lambda_{1}=c /(4 \mathrm{~L})=35,000 / 4 * 17.5=500 \mathrm{~Hz}$
- $F_{2}=c / \lambda_{2}=c /(4 / 3 \mathrm{~L})=3 \mathrm{c} / 4 \mathrm{~L}=3 * 35,000 / 4 * 17.5=1500 \mathrm{~Hz}$
- $\mathrm{F}_{1}=\mathrm{c} / \lambda_{2}=\mathrm{c} /(4 / 5 \mathrm{~L})=5 \mathrm{c} / 4 \mathrm{~L}=5 * 35,000 / 4 * 17.5=2500 \mathrm{~Hz}$
- So we expect a neutral vowel to have 3 resonances at 500, 1500, and 2500 Hz
- These vowel resonances are called formants

Seeing formants: the spectrogram

How to read spectrograms

- bab: closure of lips lowers all formants: so rapid increase in all formants at beginning of "bab"
- dad: first formant increases, but F2 and F3 slight fall
- gag: F2 and F3 come together: this is a characteristic of velars. Formant transitions take longer in velars than in alveolars or labials

HMMs for Speech

Word Model

HMMs for Continuous Observations?

- Before: discrete, finite set of observations
- Now: spectral feature vectors are real-valued!
- Solution 1: discretization
- Solution 2: continuous emissions models
- Gaussians
- Multivariate Gaussians
- Mixtures of Multivariate Gaussians
- A state is progressively:
- Context independent subphone (~ 3 per phone)
- Context dependent phone (=triphones)
- State-tying of CD phone

ASR Lexicon: Markov Models

Markov Process with Unigram LM

Figure from Huang et al page 617

Markov Process with Bigrams

Figure from Huang et al page 618

