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CS 188: Artificial Intelligence
Spring 2006

Lecture 19: Speech Recognition
3/23/2006

Dan Klein – UC Berkeley

Many slides from Dan Jurafsky

Speech in an Hour

Speech input is an acoustic wave form

s             p       ee ch l     a          b

Graphs from Simon Arnfield’s web tutorial on speech, Sheffield:
http://www.psyc.leeds.ac.uk/research/cogn/speech/tutorial/

“l” to “a”
transition:

Frequency gives pitch; amplitude gives volume
sampling at ~8 kHz phone, ~16 kHz mic (kHz=1000 cycles/sec)

Fourier transform of wave displayed as a spectrogram
darkness indicates energy at each frequency
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Spectral Analysis Acoustic Feature Sequence

Time slices are translated into acoustic feature vectors 
(~39 real numbers per slice)

Now we have to figure out a mapping from sequences of 
acoustic observations to words.
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The Speech Recognition Problem

We want to predict a sentence given an acoustic sequence:

The noisy channel approach:
Build a generative model of production (encoding)

To decode, we use Bayes’ rule to write

Now, we have to find a sentence maximizing this product

Why is this progress?
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Other Noisy-Channel Processes
Handwriting recognition

OCR

Spelling Correction

Translation?
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Digitizing Speech She just had a baby

What can we learn from a wavefile?
Vowels are voiced, long, loud
Length in time = length in space in waveform picture
Voicing: regular peaks in amplitude
When stops closed: no peaks: silence.
Peaks = voicing: .46 to .58 (vowel [iy], from second .65 to .74 (vowel 
[ax]) and so on
Silence of stop closure (1.06 to 1.08 for first [b], or 1.26 to 1.28 for 
second [b])
Fricatives like [sh]  intense irregular pattern; see .33 to .46

Examples from Ladefoged
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Simple Periodic Sound Waves
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Y axis: Amplitude = amount of air pressure at that point in time
Zero is normal air pressure, negative is rarefaction

X axis: time.  Frequency = number of cycles per second.
Frequency = 1/Period
20 cycles in .02 seconds = 1000 cycles/second = 1000 Hz

Adding 100 Hz + 1000 Hz Waves
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Frequency components (100 and 1000 Hz) on x-axis
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Part of [ae] from “had”

Note complex wave repeating nine times in figure
Plus smaller waves which repeats 4 times for every large 
pattern
Large wave has frequency of 250 Hz (9 times in .036 
seconds)
Small wave roughly 4 times this, or roughly 1000 Hz
Two little tiny waves on top of peak of 1000 Hz waves

Back to Spectra

Spectrum represents these freq components
Computed by Fourier transform, algorithm which 
separates out each frequency component of wave. 

x-axis shows frequency, y-axis shows magnitude (in 
decibels, a log measure of amplitude)
Peaks at 930 Hz, 1860 Hz, and 3020 Hz.

Mel Freq. Cepstral Coefficients

Do FFT to get spectral information
Like the spectrogram/spectrum we saw earlier

Apply Mel scaling
Linear below 1kHz, log above, equal samples above 
and below 1kHz
Models human ear; more sensitivity in lower freqs

Plus Discrete Cosine Transformation

Final Feature Vector

39 (real) features per 10 ms frame:
12 MFCC features
12 Delta MFCC features
12 Delta-Delta MFCC features
1 (log) frame energy
1 Delta (log) frame energy
1 Delta-Delta (log frame energy)

So each frame is represented by a 39D vector

For your projects:
We’ll just use two frequencies: the first two formants

Why these Peaks? 

Articulatory facts:
Vocal cord vibrations 
create harmonics
The mouth is a selective 
amplifier
Depending on shape of 
mouth, some harmonics 
are amplified more than 
others

Figures from Ratree Wayland slides from his website

Vowel [i] sung at successively higher pitch. 

1 2 3

4 5 6

7
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Deriving Schwa

Reminder of basic facts about sound waves
f = c/λ
c = speed of sound (approx 35,000 cm/sec)
A sound with λ=10 meters: f = 35 Hz (35,000/1000)
A sound with λ=2 centimeters: f = 17,500 Hz (35,000/2)

Resonances of the vocal tract
The human vocal tract as an open 
tube

Air in a tube of a given length will 
tend to vibrate at resonance 
frequency of tube. 
Constraint: Pressure differential 
should be maximal at (closed) glottal 
end and minimal at (open) lip end.

Closed end Open end

Length 17.5 cm.

Figure from W. Barry Speech Science slides

From Sundberg

Computing the 3 Formants of Schwa

Let the length of the tube be L
F1 = c/λ1 = c/(4L) = 35,000/4*17.5 = 500Hz
F2 = c/λ2 = c/(4/3L) = 3c/4L = 3*35,000/4*17.5 = 1500Hz
F1 = c/λ2 = c/(4/5L) = 5c/4L = 5*35,000/4*17.5 = 2500Hz

So we expect a neutral vowel to have 3 resonances at 
500, 1500, and 2500 Hz

These vowel resonances are called formants

From
Mark
Liberman’s
Web site

Seeing formants: the spectrogram
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How to read spectrograms

bab: closure of lips lowers all formants: so rapid  
increase in all formants at beginning of "bab”
dad: first formant increases, but F2 and F3 slight fall
gag: F2 and F3 come together: this is a characteristic  
of velars. Formant transitions take longer in velars 
than in alveolars or labials

From Ladefoged “A Course in Phonetics”

HMMs for Speech

HMMs for Continuous Observations?

Before: discrete, finite set of observations
Now: spectral feature vectors are real- valued!
Solution 1: discretization
Solution 2: continuous emissions models

Gaussians
Multivariate Gaussians
Mixtures of Multivariate Gaussians

A state is progressively:
Context independent subphone (~3 per phone)
Context dependent phone (=triphones)
State-tying of CD phone

Viterbi Decoding

ASR Lexicon: Markov Models Viterbi with 2 Words + Unif. LM

Null 
transition 
from the 
end- state 
of each 
word to 
start- state 
of all 
(both) 
words.

Figure from Huang et al page 612
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Markov Process with Unigram LM

Figure from Huang et al page 617

Markov Process with Bigrams

Figure from Huang et al page 618


