CS 188: Artificial Intelligence Spring 2006

Lecture 19: Speech Recognition 3/23/2006

Dan Klein – UC Berkeley Many slides from Dan Jurafsky

Frequency gives pitch; amplitude gives volume • sampling at ~8 kHz phone, ~16 kHz mic (kHz=1000 cycles/sec) s p ee ch l a b Fourier transform of wave displayed as a spectrogram • darkness indicates energy at each frequency

The Speech Recognition Problem

We want to predict a sentence given an acoustic sequence:

 $s^* = \arg \max P(s \mid A)$

- The noisy channel approach:
 - Build a generative model of production (encoding)

 $P(A,s) = P(s) P(A \mid s)$

To decode, we use Bayes' rule to write

 $s^* = \arg\max_{s} P(s \mid A)$

 $= \arg \max_{s} P(s)P(A \mid s)/P(A)$

 $= \arg\max P(s)P(A \mid s)$

- Now, we have to find a sentence maximizing this product
- Why is this progress?

Other Noisy-Channel Processes

Handwriting recognition

 $P(text \mid strokes) \propto P(text)P(strokes \mid text)$

■ OCR

 $P(text \mid pixels) \propto P(text)P(pixels \mid text)$

Spelling Correction

 $P(text \mid typos) \propto P(text)P(typos \mid text)$

Translation?

 $P(english | french) \propto P(english)P(french | english)$

Part of [ae] from "had"

- Note complex wave repeating nine times in figure
- Plus smaller waves which repeats 4 times for every large pattern
- Large wave has frequency of 250 Hz (9 times in .036 seconds)
- Small wave roughly 4 times this, or roughly 1000 Hz
- Two little tiny waves on top of peak of 1000 Hz waves

Back to Spectra

- Spectrum represents these freq components
- Computed by Fourier transform, algorithm which separates out each frequency component of wave.

- x-axis shows frequency, y-axis shows magnitude (in decibels, a log measure of amplitude)
- Peaks at 930 Hz, 1860 Hz, and 3020 Hz.

Mel Freq. Cepstral Coefficients

- Do FFT to get spectral information
 - Like the spectrogram/spectrum we saw earlier
- Apply Mel scaling
 - Linear below 1kHz, log above, equal samples above and below 1kHz
 - Models human ear; more sensitivity in lower freqs
- Plus Discrete Cosine Transformation

Final Feature Vector

- 39 (real) features per 10 ms frame:
 - 12 MFCC features
 - 12 Delta MFCC features
 - 12 Delta-Delta MFCC features
 - 1 (log) frame energy
 - 1 Delta (log) frame energy
 - 1 Delta-Delta (log frame energy)
- So each frame is represented by a 39D vector
- For your projects:
 - We'll just use two frequencies: the first two formants

Computing the 3 Formants of Schwa

- Let the length of the tube be L
 - $F_1 = c/\lambda_1 = c/(4L) = 35,000/4*17.5 = 500Hz$
 - $F_2 = c/\lambda_2 = c/(4/3L) = 3c/4L = 3*35,000/4*17.5 = 1500Hz$
 - $F_1 = c/\lambda_2 = c/(4/5L) = 5c/4L = 5*35,000/4*17.5 = 2500Hz$
- So we expect a neutral vowel to have 3 resonances at 500, 1500, and 2500 Hz
- These vowel resonances are called formants

HMMs for Continuous Observations?

- Before: discrete, finite set of observations
- Now: spectral feature vectors are real valued!
- Solution 1: discretization
- Solution 2: continuous emissions models
 - Gaussians
 - Multivariate Gaussians
- Mixtures of Multivariate Gaussians
- A state is progressively:
 - Context independent subphone (~3 per phone)
 - Context dependent phone (=triphones)
 - State-tying of CD phone

