CS 188: Artificial Intelligence
Spring 2006

Lecture 2: Agents
1/19/2006

Dan Klein — UC Berkeley

Many slides from either Stuart Russell or Andrew Moore

Administrivia

Reminder:

= Drop-in Python/Unix lab

= Friday 1-4pm, 275 Soda Hall
= Optional, but recommended

Accommodation issues
= Project 0 will be up by the weekend
= Newsgroup: ucb.class.cs188 (link from course page)

= Course workload curve

Today

= Agents and Environments
= Reflex Agents
= Environment Types

* Problem-Solving Agents

Agents and Environments

= The agent function maps from

= An agent program running on the

= Agents include: The line between agent
= Humans and environment depends
= Robots on the level of abstraction.
= Softbots

= Thermostats

percept histories to actions:

P — A

BT

Always think of the environment
as a black box, completely
external to the agent — even if
it's simulated by local code.

physical architecture to produces
the agent function.

Vacuum-Cleaner World

= We'll start with a VERY simple world...
Vacuum World!

A ; B

=]

Seo
2%)

= Percepts: location and contents, e.g., [A, Dirty]
= Actions: Left, Right, Suck, Ne p

A Reflex Vacuum-Cleaner

function REFLEX-VACU U= AGENT([loeafion, status]) returns an action

Lhrty then return Suck

A then return Right

Percept sequence Action
=" Right
Sucl
Left
Suek
\, Clean Right
ity Suek

Simple Reflex Agents

Agent Sensors
What the world
is like now
m
=
=,
g
:
=
What sction |
should do aw
Actustors

= Does this ever make sense as a design?

Table-Lookup Agents?

= Complete map from percept (histories) to actions

Percept sequence

= Drawbacks:
= Huge table!
= No autonomy
= Even with learning, need a long time to learn the table entries

= How would you build a spam filter agent?

= Most agent programs produce complex behaviors from compact
specifications

Rationality

= Afixed performance measure evaluates the environment sequence
= One point per square cleaned up in time T?
= One point per clean square per time step, minus one per move?
= Penalize for > k dirty squares?

= Reward should indicate success, not steps to success

= A rational agent chooses whichever action maximizes the expected
value of the performance measure given the percept sequence to
date

= Rational # omniscient: percepts may not supply all information
= Rational # clairvoyant: action outcomes may not be as expected

= Hence, rational # successful

Rationality and Goals

= Let’s say we have a game:
= Flip a biased coin (probability of heads is h)
= Tails = loose $1
= Heads = win $1

= What is the expected winnings?
= ()(h) + (-1)(1-h) =2h -1

= Rational to play?
= What if performance measure is total money?
= What if perfformance measure is spending rate?
= Why might a human play this game at expected loss?

Goal-Based Agents

s ==
. <l Sensom
What the world
How the workd evalves is like now
. 5
What it will be like
What my actions do T 1 o actin é
=
=]
o
=
What action |
should do now
Agent Actustors ——

= These agents usually first find plans then execute them.

Utility-Based Agents

What the world
is like now

What it will be like
il | do action A

How happy | will be
in such a state

JuaLIuOIAUg

Agent Actustors

= How is this different from a goal-based agent?

More Rationality

= Remember: rationality depends on:
= Performance measure
= Agent’s (prior) knowledge
= Agent’s percepts to date
= Auvailable actions

= |s it rational to inspect the street before crossing?

= |s it rational to try new things?

= |s it rational to update beliefs?

= s it rational to construct conditional plans in advance?

= Rationality gives rise to: exploration, learning, autonomy

The Road Not (Yet) Taken

= At this point we could go directly into:
= Empirical risk minimization
(statistical classification)
= Expected return maximization B85
(reinforcement learning) L]

= These are mathematical approaches that let us
derive algorithms for rational action for reflex
agents under nasty, realistic, uncertain
conditions

= But we'll have to wait until week 5, when we
have enough probability to work it all through

= Instead, we'll first consider more general goal-
based agents, but under nice, deterministic
conditions

PEAS: Automated Taxi

= Before designing an agent, we must specify the task
= We've done this informally so far...

= Consider, e.g., the task of designing an automated taxi:
= Performance measure: safety, destination, profits, legality,
comfort...

Environment: US streets/freeways, traffic, pedestrians,
weather...

Actuators: steering, accelerator, brake, horn, speaker/display...

Sensors: video, accelerometers, gauges, engine sensors,
keyboard, GPS...

PEAS: Internet Shopping Agent

= Specifications:

= Performance measure: price, quality,
appropriateness, efficiency

= Environment: current and future WWW sites, vendors,
shippers

= Actuators: display to user, follow URL, fill in form

= Sensors: HTML pages (text, graphics, scripts)

PEAS: Spam Filtering Agent

= Specifications:

= Performance measure: spam block, false positives,
false negatives

= Environment: email client or server
= Actuators: mark as spam, transfer messages

= Sensors: emails (possibly across users), traffic, etc.

Environment Simplifications

= Fully observable (vs. partially observable): An agent's
sensors give it access to the complete state of the
environment at each point in time.

= Deterministic (vs. stochastic): The next state of the
environment is completely determined by the current
state and the action executed by the agent.

= Episodic (vs. sequential): The agent's experience is
divided into independent atomic "episodes” (each
episode consists of the agent perceiving and then
performing a single action)

Environment Simplifications

= Static (vs. dynamic): The environment is
unchanged while an agent is deliberating.

= Discrete (vs. continuous): A limited number of
distinct, clearly defined percepts and actions.

= Single agent (vs. multi aent): An agent
operating by itself in an environment.

= What's the real world like?

Environment Types

Peg Back- Internet | Taxi
Solitaire | 98mMmMON | Shopping

Observable v v X

Deterministic v X ° X
Episodic X X X X
Static v v ° X
Discrete v v v’ X
Single-Agent v X v X

= The environment type largely determines the agent design

= The real world is partially observable, stochastic, sequential,
dynamic, continuous, multi-agent

Problem-Solving Agents

Funetion SIMPLE-PRODLEM-SOLY ING-AGENT(pereept] returns an action
static: seq, an action sequence, initially empty
v, some description of the current woeld state
goal, initially null
a problem formulation
UPDATE-STATE state, pereept)

s empty then
RMULATE-GOAL[sto

— This is the hard part!

return action

= This offline problem solving!
= Solution is executed “eyes closed.”
= When will offline solutions work? Fail?

Example: Romania

el imisoara

= Sy

(T .
| Lugej
20|

BMehadia |\ \ = ﬂ,hrqtma

Eforie

Example: Romania

= Setup
= On vacation in Romania; currently in Arad
= Flight leaves tomorrow from Bucharest

= Formulate problem:
= States: being in various cities
= Actions: drive between adjacent cities

= Define goal:
= Being in Bucharest

= Find a solution:
= Sequence of actions, e.g. [Arad — Sibiu, Sibiu — Fagaras, ...]

Problem Types

= Deterministic, fully observable - single-state problem

= Agent knows exactly which state it will be in; solution is a sequence, can
solve offline using model of environment

= Non-observable - sensorless problem (conformant problem)
= Agent may have no idea where it is; solution is a sequence

= Nondeterministic and/or partially observable = contingency problem
Percepts provide new information about current state

Often first priority is gathering information or coercing environment
Often interleave search, execution

Cannot solve offline

= Unknown state space - exploration problem

Example: Vacuum World

= Goal? 3 . 4

= States? 1 2
* Single Ste: Startin 5. ’ ‘[T&A

= Solution?

= [Right, Suck] 4 . ! .

= Sensorless: Start in {1...8}
= Solution?
= [Right, Suck, Left, Suck]

Single State Problems

= A search problem is defined by four items:

= Initial state: e.g. Arad
= Successor function S(x) = set of action—state pairs:
e.g., S(Arad) = {<Arad — Zerind, Zerind>, ... }

= Goal test, can be

= explicit, e.g., x = Bucharest

= implicit, e.g., Checkmate(x)
= Path cost (additive)

= e.g., sum of distances, number of actions executed, etc.

= ¢(x,a,y) is the step cost, assumed to be =2 0

= A solution is a sequence of actions leading from the initial state to a
goal state

= Problem formulations are almost always abstractions and
simplifications

Example: Vacuum World

5 5
- L3 - L3
(FLTED (FLLEE
(H I
5 5

= Can represent problem as a graph
= Nodes are states
= Arcs are actions

Example: Romania

ﬁl_’:ﬂiﬁonm
(T

| Lugej
‘hlbuohnd 85 _Hmmva
in ~ Y
| \V
Dobretag__ 12
Eforie

Example: 8-Puzzle

BEan 7]

H DOmBan

GG]
Start State Goal State

= What are the states?

= What are the actions?

= What states can | reach from the start state?
= What should the costs be?

Example: Assembly

= What are the states?

= What is the goal?

= What are the actions?

= What should the costs be?

Tree Search

Tree Search Example

= Basic solution method for graph problems
= Offline simulated exploration of state space
= Searching a model of the space, not the real world

a solution, or failure

i) retur
initial state of §

function TREE-SEARCH pr
ze the search tree wsing

if there are no candidates for expansion then return failure

chagse a leaf node for expansion according to
if the nede contains a goal state then return the coresponding solution
else expand the node and add the resulting nodes to the search tree

States vs. Nodes

el
Tree Search
function TreE-SEanon(fringe) returns a solution, or failure
InsERT(MAKE- {ISImAL-STATE[problem]), fringe)

loop do

il fringe is empty then return failure

" REsovE-F

il Goar-Test nisde)) then

return SoLUTios] wde)

), fringr)

INsERTAL

returns a set of nodes
ATt nenr]
(prrobler

function Ex

for It in St te} do

PARENT-RODE[)] = ned; AcTi0%] on; STATE[
Pari-Cost[] — Pari- t{nodi] +5rr-Cost{ stule, action, result)
DErFTH[s| — DErrufnade] + 1

add # to success

retirn s <o,

= Problem graphs have problem states
= Have successors
= Search trees have search nodes
= Have parents, children, depth, path cost, etc.
= Expand uses successor function to create new search tree nodes
= The same problem state may be in multiple search tree nodes

parent. action

State

Summary

= Agents interact with environments through actuators and sensors
= The agent function describes what the agent does in all circumstances
= The agent program calculates the agent function
= The performance measure evaluates the environment sequence

= A perfectly rational agent maximizes expected performance

= PEAS descriptions define task environments

= Environments are categorized along several dimensions:
. Obser7vable? Deterministic? Episodic? Static? Discrete? Single-
agent?

= Problem-solving agents make a plan, then execute it

= State space encodings of problems

