CS 188: Artificial Intelligence Spring 2006

Lecture 2: Agents 1/19/2006

Dan Klein - UC Berkeley Many slides from either Stuart Russell or Andrew Moore

Administrivia

- Reminder:Drop-in Python/Unix lab
 - Friday 1-4pm, 275 Soda Hall
 Optional, but recommended
- Accommodation issues
- Project 0 will be up by the weekend
- Newsgroup: ucb.class.cs188 (link from course page)
- Course workload curve

Today

- Agents and Environments
- Reflex Agents
- Environment Types
- Problem-Solving Agents

Agents and Environments

- Agents include:
 - Humans
 - Robots Softbots
- The agent function maps from percept histories to actions:

 $\mathcal{P}^* \to \mathcal{A}$

An agent program running on the physical architecture to produces the agent function.

The line between agent and environment depends on the level of abstraction.

Always think of the environment as a black box, completely external to the agent – even if it's simulated by local code.

Vacuum-Cleaner World

We'll start with a VERY simple world...

Vacuum World!

- Percepts: location and contents, e.g., [A, Dirty]
- Actions: Left, Right, Suck, No p

A Reflex Vacuum-Cleaner

function REFLEX-VACUUM-AGENT([location,status]) returns an action ${\bf if} \; status = {\it Dirty} \; {\bf then} \; {\bf return} \; {\it Suck}$ else if location = A then return Right else if location = B then return Left

Percept sequence	Action	
[A, Clean]	Right	
[A, Dirty]	Suck	
[B, Clean]	Left	
[B, Dirty]	Suck	
[A, Clean], [A, Clean]	Right	
[A, Clean], [A, Dirty]	Suck	
1		

Simple Reflex Agents

Does this ever make sense as a design?

Table-Lookup Agents?

Complete map from percept (histories) to actions

Percept sequence	Action	
[A, Clean]	Right	
[A, Dirty]	Suck	
[B, Clean]	Left	
[B, Dirty]	Suck	
[A, Clean], [A, Clean]	Right	
[A, Clean], [A, Dirty]	Suck	
i	1	

- Drawbacks:
 - Huge table!

 - · Even with learning, need a long time to learn the table entries
- How would you build a spam filter agent?
- Most agent programs produce complex behaviors from compact specifications

Rationality

- A fixed performance measure evaluates the environment sequence
 - One point per square cleaned up in time T?
 - One point per clean square per time step, minus one per move?
 - Penalize for > k dirty squares?
- Reward should indicate success, not steps to success
- A rational agent chooses whichever action maximizes the expected value of the performance measure given the percept sequence to date
- Rational \neq omniscient: percepts may not supply all information Rational \neq clairvoyant: action outcomes may not be as expected
- Hence, rational ≠ successful

Rationality and Goals

- Let's say we have a game:Flip a biased coin (probability of heads is h)
 - Tails = loose \$1
 - Heads = win \$1
- What is the expected winnings?
 - (1)(h) + (-1)(1-h) = 2h 1
- Rational to play?
 - What if performance measure is total money?
 - · What if performance measure is spending rate?
 - Why might a human play this game at expected loss?

Goal-Based Agents

• These agents usually first find plans then execute them.

Utility-Based Agents

• How is this different from a goal-based agent?

More Rationality

- Remember: rationality depends on:
 - Performance measure
 - Agent's (prior) knowledge
 - · Agent's percepts to date
 - Available actions
- Is it rational to inspect the street before crossing?
- Is it rational to try new things?
- Is it rational to update beliefs?
- Is it rational to construct conditional plans in advance?
- Rationality gives rise to: exploration, learning, autonomy

The Road Not (Yet) Taken

- At this point we could go directly into:
 - Empirical risk minimization (statistical classification)
 - Expected return maximization (reinforcement learning)
- These are mathematical approaches that let us derive algorithms for rational action for reflex agents under nasty, realistic, uncertain conditions
- But we'll have to wait until week 5, when we have enough probability to work it all through
- Instead, we'll first consider more general goalbased agents, but under nice, deterministic conditions

PEAS: Automated Taxi

- Before designing an agent, we must specify the task
 - We've done this informally so far...
- Consider, e.g., the task of designing an automated taxi:
 - Performance measure: safety, destination, profits, legality, comfort
 - Environment: US streets/freeways, traffic, pedestrians, weather
 - Actuators: steering, accelerator, brake, horn, speaker/display...
 - Sensors: video, accelerometers, gauges, engine sensors, keyboard, GPS...

PEAS: Internet Shopping Agent

- Specifications:
 - Performance measure: price, quality, appropriateness, efficiency
 - Environment: current and future WWW sites, vendors, shippers
 - Actuators: display to user, follow URL, fill in form
 - Sensors: HTML pages (text, graphics, scripts)

PEAS: Spam Filtering Agent

- Specifications:
 - Performance measure: spam block, false positives, false negatives
 - Environment: email client or server
 - Actuators: mark as spam, transfer messages
 - Sensors: emails (possibly across users), traffic, etc.

Environment Simplifications

- Fully observable (vs. partially observable): An agent's sensors give it access to the complete state of the environment at each point in time.
- Deterministic (vs. stochastic): The next state of the environment is completely determined by the current state and the action executed by the agent.
- Episodic (vs. sequential): The agent's experience is divided into independent atomic "episodes" (each episode consists of the agent perceiving and then performing a single action)

Environment Simplifications

- Static (vs. dynamic): The environment is unchanged while an agent is deliberating.
- Discrete (vs. continuous): A limited number of distinct, clearly defined percepts and actions.
- Single agent (vs. multi- agent): An agent operating by itself in an environment.
- What's the real world like?

Environment Types

	Peg Solitaire	Back- gammon	Internet Shopping	Taxi
Observable	~	~	×	×
Deterministic	✓	×	?	×
Episodic	×	×	×	×
Static	✓	~	?	×
Discrete	✓	~	~	×
Single-Agent	✓	×	✓	×

- The environment type largely determines the agent design
- The real world is partially observable, stochastic, sequential, dynamic, continuous, multi-agent

Problem-Solving Agents

static: seq. an action sequence, initially empty state, some description of the current world state goal, a goal, initially null problem, a problem formulation $state \leftarrow Update-State(state, percept)$ if seq is empty then goal - FORMULATE-GOAL(state) problem — FORMULATE-PROBLEM(state, goal)
seq — SEARCH(problem)
action — FIRST(seq); seq — REST(seq) This is the hard part!

- This offline problem solving!
- Solution is executed "eyes closed."
- When will offline solutions work? Fail?

Example: Romania

Example: Romania

- - On vacation in Romania; currently in Arad
 - Flight leaves tomorrow from Bucharest
- Formulate problem:
 - States: being in various cities
 - Actions: drive between adjacent cities
- Define goal:
 - Being in Bucharest
- Find a solution:
 - Sequence of actions, e.g. [Arad → Sibiu, Sibiu → Fagaras, ...]

Problem Types

- Deterministic, fully observable → single-state problem

 Agent knows exactly which state it will be in; solution is a sequence, can solve offline using model of environment
- Non-observable → sensorless problem (conformant problem)

 Agent may have no idea where it is; solution is a sequence
- Nondeterministic and/or partially observable → contingency problem Percepts provide new information about current state
 - Often first priority is gathering information or coercing environment
 - Often interleave search, execution
 - Cannot solve offline
- Unknown state space → exploration problem

Tree Search

- Basic solution method for graph problems
 - Offline simulated exploration of state space
 - · Searching a model of the space, not the real world

function TREE-SEARCH(problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problemloop do
if there are no candidates for expansion then return failure

choose a leaf node for expansion according to strategy if the node contains a goal state then return the corresponding solution $\ensuremath{\mathbf{else}}$ expand the node and add the resulting nodes to the search tree

Tree Search Example

Tree Search

function TREE-SEARCH(problem, fringe) returns a solution, or failure fringe — INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe) fringe ← l

if fringe is empty then return failure
node—REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE(node)) then return SOLUTION(node) $fringe \leftarrow InsertAll(Expand(node, problem), fringe)$

function ENPAND(node, problem) returns a set of nodes successors -- the empty set; state -- STATE[node] for each action, result in SUCCESSOR-FN(problem, state) do

cach action, result in Sections of Aprionicin, suited to $s \leftarrow a$ new NODE | Action[4] $\leftarrow a$ action; State[4] $\leftarrow result$ | Path-Cost[a] $\leftarrow P$ action; Cost[a] $\leftarrow a$ action; Cost[a] $\leftarrow a$ action; Cost[a] $\leftarrow a$ action; Cost[a] $\rightarrow a$ action; Cost

return successors

States vs. Nodes

- Problem graphs have problem states
 - Have successors
- Search trees have search nodes
 - Have parents, children, depth, path cost, etc.
 - Expand uses successor function to create new search tree nodes
 - The same problem state may be in multiple search tree nodes

Summary

- Agents interact with environments through actuators and sensors

 The agent function describes what the agent does in all circumstances

 The agent program calculates the agent function

 - The performance measure evaluates the environment sequence
- A perfectly rational agent maximizes expected performance
- PEAS descriptions define task environments
- Environments are categorized along several dimensions:
 - Observable? Deterministic? Episodic? Static? Discrete? Singleagent?
- Problem-solving agents make a plan, then execute it
- State space encodings of problems