CS 188: Artificial Intelligence Spring 2006

Lecture 20: Utilities 4/4/2006

Dan Klein - UC Berkeley

Recap: HMMs

- Hidden Markov models (HMMs)
 - Underlying Markov chain over states X
 - You only observe outputs (effects) E at each time step
 - Want to reason about the hidden states X given observations E

$$P(x_{1:T}, e_{1:T}) = P(x_1)P(e_1|x_1) \prod_{i=2}^{T} P(x_i|x_{i-1})P(e_i|x_i)$$

Recap: Speech Recognition

- Observations are acoustic measurements
 - Real systems:
 - 39 MFCC coefficients
 - Real numbers, modeled with mixtures of multidimensional Gaussians
 - Your projects:
 - 2 real numbers (formant frequencies)
 - Discretized values, discrete conditional probs

Speech Recognition

- States indicate which part of which word we're speaking
 - Each word broken into phonemes
 - Real systems: context-dependent sub-phonemes
 - Your projects: just one state per phoneme
- Example: Yes/No recognizer

$$P(x|x_0) = \begin{cases} 0.5 & \text{if } x = x_1, \\ 0.5 & \text{if } x = x_4. \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{cases} 0.8 & \text{if } x = x_1, \\ 0.2 & \text{if } x = x_1, \end{cases}$$

$$P(x|x_1) = \begin{cases} 0.8 & \text{if } x = x_1, \\ 0.2 & \text{if } x = x_2. \\ 0 & \text{otherwise} \end{cases}$$

Speech Recognition

- Emission probs: distribution over acoustic observations for each phoneme
 - How to learn these? See project 3!

$$P(e|\text{``o''})$$
 0.1 0.2 0.5 $P(e|\text{``o''})$ 0.6 0.2 0.1 $P(e|\text{``e''})$

Example of Hidden Sequences

- For the yes/no recognizer, imagine we hear "yynooo"
- What are the scores of possible labelings?

The Viterbi Algorithm

- The Viterbi algorithm computes the best labeling for an observation sequence
 - Incrementally computes best scores for subsequences
 - Recurrence:

$$\begin{split} m_t[x_t] &= \max_{x_1:t-1} P(x_{1:t-1}, x_t, e_{1:t}) \\ &= \max_{x_1:t-1} P(x_{1:t-1}, e_{1:t-1}) P(x_t|x_{t-1}) P(e_t|x_t) \\ &= P(e_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) \max_{x_{1:t-2}} P(x_{1:t-1}, e_{1:t-1}) \\ &= P(e_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) m_{t-1}[x_{t-1}] \end{split}$$

Also store backtraces which record the argmaxes

Example						
<s></s>	•	•	•	•	•	•
у	•	•	•	•	•	•
3	•	•	•	•	•	•
S	•	•	•	•	•	•
n	•	•	•	•	•	•
0	•	•	•	•	•	•
	•	•	•	•	•	•
	e ₀ " <s>"</s>	e ₁₃ "y"	e ₂₇ "n"	e ₅ "o"	e ₅ "o"	e ₁₀₀ ""

Utilities

- So far: talked about beliefs
- Important difference between:
 - Belief about some variables
 - Rational action involving those variables
 - Remember the midterm question?
- Next: utilities

Preferences

- An agent chooses among:
 - Prizes: *A*, *B*, etc.
 - Lotteries: situations with uncertain prizes

$$L = [p, A; (1-p), B]$$

- Notation:
 - $A \succ B$ A preferred over B
 - $A \sim B$ indifference between A and B
 - $A \succeq B$ B not preferred over A

Rational Preferences

- We want some constraints on preferences before we call them rational
- For example: an agent with intransitive preferences can be induced to give away all its money
 - If B > C, then an agent with C would pay (say) 1 cent to get B
 - If A > B, then an agent with B would pay (say) 1 cent to get A
 - If C > A, then an agent with A would pay (say) 1 cent to get C

Rational Preferences

- Preferences of a rational agent must obey constraints.
 - These constraints (plus one more) are the axioms of rationality

 Theorem: Rational preferences imply behavior describable as maximization of expected utility

MEU Principle

- Theorem:
 - [Ramsey, 1931; von Neumann & Morgenstern, 1944]
 - Given any preferences satisfying these constraints, there exists a real-valued function U such that:

$$U(A) \ge U(B) \Leftrightarrow A \succeq B$$

 $U([p_1, S_1; \dots; p_n, S_n]) = \sum_i p_i U(S_i)$

- Maximum expected likelihood (MEU) principle:
 - Choose the action that maximizes expected utility
 - Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
 - E.g., a lookup table for perfect tictactoe

Human Utilities

- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment of human utilities:
 - Compare a state A to a standard lottery L_D between
 - "best possible prize" u₊ with probability p
 - "worst possible catastrophe" u_ with probability 1-p
 - Adjust lottery probability p until A ~ L_D
 - Resulting p is a utility in [0,1]

Utility Scales

- Normalized utilities: u₊ = 1.0, u₋ = 0.0
- Micromorts: one-millionth chance of death, useful for paying to reduce product risks, etc.
- QALYs: quality-adjusted life years, useful for medical decisions involving substantial risk
- Note: behavior is invariant under positive linear transformation

$$U'(x) = k_1 U(x) + k_2$$
 where $k_1 > 0$

 With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes

Money

- Money does not behave as a utility function
- Given a lottery L:
 - Define expected monetary value EMV(L)
 - Usually U(L) < U(EMV(L))
 - I.e., people are risk-averse
- Utility curve: for what probability p am I indifferent between:
 - A prize x
 - A lottery [p,\$M; (1-p),\$0] for large M?
- Typical empirical data, extrapolated with risk-prone behavior:

Example: Insurance

- Consider the lottery [0.5,\$1000; 0.5,\$0]?
 - What is its expected monetary value? (\$500)
 - What is its certainty equivalent?
 - Monetary value acceptable in lieu of lottery
 - \$400 for most people
 - Difference of \$100 is the insurance premium
 - There's an insurance industry because people will pay to reduce their risk
 - If everyone were risk-prone, no insurance needed!

Example: Human Rationality?

- Famous example of Allais (1953)
 - A: [0.8,\$4k; 0.2,\$0]
 - B: [1.0,\$3k; 0.0,\$0]
 - C: [0.2,\$4k; 0.8,\$0]
 - D: [0.25,\$3; 0.75,\$0]
- Most people prefer B > A, C > D
- But if U(\$0) = 0, then
 - B > A \Rightarrow U(\$3k) > 0.8 U(\$4k)
 - $C > D \Rightarrow 0.8 U(\$4k) > U(\$3k)$

Decision Networks

- Extended BNs
 - Chance nodes (circles, like in BNs)
 - Decision nodes (rectangles)
 - Utility nodes (diamonds)
- Can guery to find action with max expected utility
- Online applets if you want to play with these

Value of Information

- Idea: compute value of acquiring each possible piece of evidence
 - Can be done directly from decision network
- Example: buying oil drilling rights
 - Two blocks A and B, exactly one has oil, worth k
 - Prior probabilities 0.5 each, mutually exclusive
 - Current price of each block is k/2
 - "Consultant" offers accurate survey of A. Fair price?
- Solution: compute expected value of information
 - = expected value of best action given the information minus expected value of best action without information
- Survey may say ``oil in A" or ``no oil in A", prob 0.5 each (given!) = [0.5 * value of ``buy A" given ``oil in A"] + [0.5 * value of ``buy B" given ``no oil in A"]
 - = [0.5 * k/2] + [0.5 * k/2] 0 = k/2

General Formula

- Current evidence Ε, current best action α
- Possible action outcomes S_i, potential new evidence E_i

$$EU(\alpha|E) = \max_{a} \sum_{i} U(S_i) P(S_i|E, a)$$

• Suppose we knew $E_i = e_{ik}$, then we would choose $\alpha(e_{ik})$ s.t.

$$EU(\alpha_{e_{jk}}|E, E_j = e_{jk}) = \max_{a} \sum_{i} U(S_i) P(S_i|E, a, E_j = e_{jk})$$

- BUT E_i is a random variable whose value is currently unknown, so:
 - Must compute expected gain over all possible values

$$VPI_E(E_j) = \left(\sum_k P(E_j = e_{jk}|E)EU(\alpha_{e_{jk}}|E, E_j = e_{jk})\right) - EU(\alpha|E)$$

(VPI = value of perfect information)

VPI Properties

Nonnegative in expectation

$$\forall j, E : VPI_E(E_j) \geq 0$$

• Nonadditive --- consider e a obtaining E twice $VPI_E(E_j,E_k) \neq VPI_E(E_j) + VPI_E(E_k)$

$$\bullet O^{VPI_E(E_j, E_k)} = VPI_E(E_j) + VPI_{E, E_j}(E_k)
= VPI_E(E_k) + VPI_{E, E_k}(E_j)$$

Next Class

- Start on reinforcement learning!
 - Central idea of modern Al
 - How to learn complex behaviors from simple feedback
 - Basic technique for robotic control
 - Last large technical unit of the course