CS 188: Artificial Intelligence Spring 2006

Lecture 20: Utilities
4/4/2006

Recap: HMMs

- Hidden Markov models (HMMs)
- Underlying Markov chain over states X
- You only observe outputs (effects) E at each time step
- Want to reason about the hidden states X given observations E

$P\left(x_{1: T}, e_{1: T}\right)=P\left(x_{1}\right) P\left(e_{1} \mid x_{1}\right) \prod_{i=2}^{T} P\left(x_{i} \mid x_{i-1}\right) P\left(e_{i} \mid x_{i}\right)$

Recap: Speech Recognition

- Observations are acoustic measurements
- Real systems:
- 39 MFCC coefficients
- Real numbers, modeled with mixtures of multidimensional Gaussians
- Your projects:
- 2 real numbers (formant
 frequencies)
- Discretized values, discrete conditional probs

Speech Recognition

- States indicate which part of which word we're
speaking
- Each word broken into phonemes
- Real systems: context-dependent sub-phonemes
- Your projects: just one state pe phoneme
- Example: Yes/No recognizer

$$
P\left(x \mid x^{\prime}\right)
$$

$$
P\left(x \mid x_{0}\right)= \begin{cases}0.5 & \text { if } x=x_{1} \\ 0.5 & \text { if } x=x_{4} \\ 0 & \text { otherwise }\end{cases}
$$

$$
P\left(x \mid x_{1}\right)= \begin{cases}0.8 & \text { if } x=x_{1} \\ 0.2 & \text { if } x=x_{2} \\ 0 & \text { otherwise }\end{cases}
$$

Example of Hidden Sequences

- For the yes/no recognizer, imagine we hear "yynooo"
- What are the scores of possible labelings? observations for each phoneme
- How to learn these? See project 3!

The Viterbi Algorithm

- The Viterbi algorithm computes the best labeling for an observation sequence
- Incrementally computes best scores for subsequences
- Recurrence:
$m_{t}\left[x_{t}\right]=\max _{x_{1: t-1}} P\left(x_{1: t-1}, x_{t}, e_{1: t}\right)$

$$
=\max _{x_{1: t-1}} P\left(x_{1: t-1}, e_{1: t-1}\right) P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right)
$$

$$
=P\left(e_{t} \mid x_{t}\right) \max _{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) \max _{x_{1: t-2}} P\left(x_{1: t-1}, e_{1: t-1}\right)
$$

$$
=P\left(e_{t} \mid x_{t}\right) \max _{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) m_{t-1}\left[x_{t-1}\right]
$$

- Also store backtraces which record the argmaxes

Preferences

- An agent chooses among
- Prizes: A, B, etc.
- Lotteries: situations with uncertain prizes

$$
L=[p, A ;(1-p), B]
$$

- Notation:

$A \succ B$	A preferred over B
$A \sim B$	indifference between A and B
$A \succeq B$	B not preferred over A

$A \succ B \quad A$ preferred over B
$A \succeq B \quad B$ not preferred over A

Rational Preferences

- We want some constraints on preferences before we call them rational
- For example: an agent with intransitive preferences can be induced to give away all its money
- If $B>C$, then an agent with C would pay (say) 1 cent to get B
- If $A>B$, then an agent with B would pay (say) 1 cent to get A
- If $C>A$, then an agent with A would pay (say) 1 cent to get C

Rational Preferences

- Preferences of a rational agent must obey constraints.
- These constraints (plus one more) are the axioms of rationality

Orderability

$$
(A \succ B) \vee(B \succ A) \vee(A \sim B)
$$

Transitivity
$(A \succ B) \wedge(B \succ C) \Rightarrow(A \succ C)$
Continuity
$A \succ B \succ C \Rightarrow \exists p[p, A ; 1-p, C] \sim B$
Substitutability
$A \sim B \Rightarrow[p, A ; 1-p, C] \sim[p, B ; 1-p, C]$
Monotonicity
$A \succ B \Rightarrow$
$(p \geq q \Leftrightarrow[p, A ; 1-p, B] \succeq[q, A ; 1-q, B])$

- Theorem: Rational preferences imply behavior describable as maximization of expected utility

MEU Principle

- Theorem:
- [Ramsey, 1931; von Neumann \& Morgenstern, 1944]
- Given any preferences satisfying these constraints, there exists a real-valued function U such that:

$$
\begin{aligned}
& U(A) \geq U(B) \Leftrightarrow A \succeq B \\
& U\left(\left[p_{1}, S_{1} ; \ldots ; p_{n}, S_{n}\right]\right)=\sum_{i} p_{i} U\left(S_{i}\right)
\end{aligned}
$$

- Maximum expected likelihood (MEU) principle:
- Choose the action that maximizes expected utility
- Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
- E.g., a lookup table for perfect tictactoe

Human Utilities

- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment of human utilities:
- Compare a state A to a standard lottery L_{p} between
- "best possible prize" u_{+}with probability p
- "worst possible catastrophe" u with probability 1-p
- Adjust lottery probability p until $A \sim L_{p}$
- Resulting p is a utility in $[0,1]$
pay $\$ 30$ ~

Utility Scales

- Normalized utilities: $u_{+}=1.0, u_{-}=0.0$
- Money does not behave as a utility function
- Micromorts: one-millionth chance of death, useful for paying to reduce product risks, etc
- QALYs: quality-adjusted life years, useful for medical decisions involving substantial risk
- Note: behavior is invariant under positive linear transformation

$$
U^{\prime}(x)=k_{1} U(x)+k_{2} \quad \text { where } k_{1}>0
$$

- With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes
- Given a lottery L.

Define expected monetary value $\operatorname{EMV}(\mathrm{L})$

- Usually $\mathrm{U}(\mathrm{L})<\mathrm{U}(\mathrm{EMV}(\mathrm{L}))$
- I.e., people are risk-averse
- Utility curve: for what probability p am I indifferent between:
- A prize x
- A lottery [p,\$M; (1-p),\$0] for large M?
- Typical empirical data, extrapolated with risk-prone behavior:

Example: Insurance

- Consider the lottery [0.5,\$1000; 0.5,\$0]?
- What is its expected monetary value? (\$500)
- What is its certainty equivalent?
- Monetary value acceptable in lieu of lottery
- \$400 for most people
- Difference of \$100 is the insurance premium
- There's an insurance industry because people will pay to reduce their risk
- If everyone were risk-prone, no insurance needed!

Example: Human Rationality?

- Famous example of Allais (1953)
- A: [0.8,\$4k; 0.2,\$0]
- B: [1.0,\$3k; 0.0,\$0]
- C: [0.2,\$4k; 0.8,\$0]
- D: [0.25,\$3; 0.75,\$0]
- Most people prefer $B>A, C>D$
- But if $U(\$ 0)=0$, then
- $\mathrm{B}>\mathrm{A} \Rightarrow \mathrm{U}(\$ 3 \mathrm{k})>0.8 \mathrm{U}(\$ 4 \mathrm{k})$
- $\mathrm{C}>\mathrm{D} \Rightarrow 0.8 \mathrm{U}(\$ 4 \mathrm{k})>\mathrm{U}(\$ 3 \mathrm{k})$

Decision Networks

- Extended BNs
- Chance nodes (circles, like in BNs)
- Decision nodes (rectangles)
- Utility nodes (diamonds)
- Can query to find action with max expected utility
- Online applets if you want to play with these

Value of Information

- Idea: compute value of acquiring each possible piece of evidence - Can be done directly from decision network
- Example: buying oil drilling rights

Two blocks A and B, exactly one has oil, worth k

- Prior probabilities 0.5 each, mutually exclusive
- Current price of each block is k/2
- "Consultant" offers accurate survey of A. Fair price?
- Solution: compute expected value of information
$=$ expected value of best action given the information minus expected best action without information
- Survey may say "oil in A " or "no oil in A ", prob 0.5 each (given!) $=\left[0.5^{*}\right.$ value of "buy A " given "oil in $\left.A^{\prime \prime}\right]+$ [0.5 * value of "buy B " given "no oil in A "] -0
$=[0.5 * k / 2]+[0.5 * k / 2]-0=k / 2$

General Formula

- Current evidence E, current best action α
- Possible action outcomes S_{i}, potential new evidence E_{j}

$$
E U(\alpha \mid E)=\max _{a} \sum_{i} U\left(S_{i}\right) P\left(S_{i} \mid E, a\right)
$$

- Suppose we knew $E_{i j}=e_{i k}$, then we would choose $\alpha\left(e_{i k}\right)$ s.t.
$E U\left(\alpha_{e_{j k}} \mid E, E_{j}=e_{j k}\right)=\max _{a} \sum_{i} U\left(S_{i}\right) P\left(S_{i} \mid E_{1}, a, E_{j}=e_{j k}\right)$
- BUT E_{j} is a random variable whose value is currently unknown, so
- Must compute expected gain over all possible values
$V P I_{E}\left(E_{j}\right)=\left(\sum_{k} P\left(E_{j}=e_{j k} \mid E\right) E U\left(\alpha_{e_{j k}} \mid E, E_{j}=e_{j k}\right)\right)-E U(\alpha \mid E)$,
- (VPI = value of perfect information)

VPI Properties

- Nonnegative in expectation

$$
\forall j, E: V P I_{E}\left(E_{j}\right) \geq 0
$$

- Nonadditive--- nnsider e n nhtaininn F: twvice

$$
V P I_{E}\left(E_{j}, E_{k}\right) \neq V P I_{E}\left(E_{j}\right)+V P I_{E}\left(E_{k}\right)
$$

- $\mathrm{O}^{V P I_{E}\left(E_{j}, E_{k}\right)=V P I_{E}\left(E_{j}\right)+V P I_{E, E_{j}}\left(E_{k}\right)}$

$$
=V P I_{E}\left(E_{k}\right)+V P I_{E, E_{k}}\left(E_{j}\right)
$$

Next Class

- Start on reinforcement learning!
- Central idea of modern AI
- How to learn complex behaviors from simple feedback
- Basic technique for robotic control
- Last large technical unit of the course

