CS 188: Artificial Intelligence Spring 2006

Lecture 20: Utilities 4/4/2006

Dan Klein - UC Berkeley

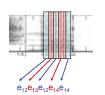
Recap: HMMs • Hidden Markov models (HMMs) • Underlying Markov chain over states X • You only observe outputs (effects) E at each time step • Want to reason about the hidden states X given observations E $\begin{array}{cccc} X_1 & X_2 & X_3 & X_4 & X_7 \\ E_1 & E_2 & E_3 & E_4 \end{array}$ $P(x_{1:T}, e_{1:T}) = P(x_1)P(e_1|x_1) \prod_{i=1}^{T} P(x_i|x_{i-1})P(e_i|x_i)$

Recap: Speech Recognition

- Observations are acoustic measurements
 - Real systems:
 - 39 MFCC coefficients
 - Real numbers, modeled with mixtures of multidimensional Gaussians
 - Your projects:

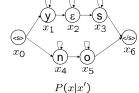
 $P(e|"\epsilon")$

- 2 real numbers (formant frequencies)
- Discretized values, discrete conditional probs



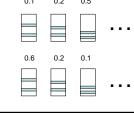
States indicate which part of which word we're speaking $\begin{array}{c} \text{States indicate} \\ \text{With part of which} \\ \text{With part of which} \\ \text{States indicate} \\ \text{States indicate} \\ \text{With part of which} \\ \text{States indicate} \\ \text{With part of which} \\ \text{$

- Each word broken into phonemes
- Real systems: context-dependent sub-phonemes
- Your projects: just one state per phoneme
- Example: Yes/No recognizer

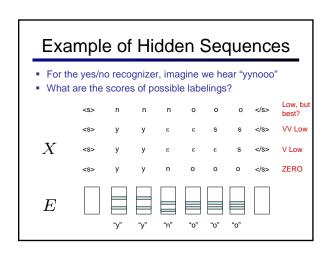


 $P(x|x_0) = \begin{cases} 0.5 & \text{if } x = x_1, \\ 0.5 & \text{if } x = x_4. \\ 0 & \text{otherwise} \end{cases}$ $P(x|x_1) = \begin{cases} 0.8 & \text{if } x = x_1, \\ 0.2 & \text{if } x = x_2. \\ 0 & \text{otherwise} \end{cases}$

Emission probs: distribution over acoustic observations for each phoneme How to learn these? See project 3! 0.1 0.2 0.5 P(e| "o")



Speech Recognition



The Viterbi Algorithm

- The Viterbi algorithm computes the best labeling for an observation sequence
 - Incrementally computes best scores for subsequences

$$\begin{split} \bullet & \text{ Recurrence:} \\ & m_t[x_t] = \max_{x_1:t-1} P(x_{1:t-1}, x_t, e_{1:t}) \\ & = \max_{x_1:t-1} P(x_{1:t-1}, e_{1:t-1}) P(x_t|x_{t-1}) P(e_t|x_t) \\ & = P(e_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) \max_{x_{1:t-2}} P(x_{1:t-1}, e_{1:t-1}) \\ & = P(e_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) m_{t-1}[x_{t-1}] \end{split}$$

$= \max_{x_{1:t-1}} P(x_{1:t-1}, e_{1:t-1}) P(x_t x_{t-1}) P(e_t x_t)$
$= P(e_t x_t) \max_{x_{t-1}} P(x_t x_{t-1}) \max_{x_{1:t-2}} P(x_{1:t-1}, e_{1:t-1})$
$= P(e_t x_t) \max_{x_{t-1}} P(x_t x_{t-1}) m_{t-1}[x_{t-1}]$
 Also store backtraces which record the argmaxes

Example							
<s></s>	•	•	•	•	•	•	
у	•	•	•	•	•	•	
ε	•	•	•	•	•	•	
S	•	•	•	•	•	•	
n	•	•	•	•	•	•	
0	•	•	•	•	•	•	
	•	•	•	•	•	•	
	e ₀	e ₁₃	e ₂₇	e ₅	e ₅	e ₁₀₀	
	" <s>"</s>	"y"	"n"	"o"	"o"	""	

Utilities

- So far: talked about beliefs
- Important difference between:
 - Belief about some variables
 - Rational action involving those variables
 - Remember the midterm question?
- Next: utilities

Preferences

- An agent chooses among:
 - Prizes: A, B, etc.
 - · Lotteries: situations with uncertain prizes

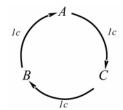
Orderability

$$L = [p, A; (1-p), B]$$

- Notation:
 - $A \succ B$ ${\cal A}$ preferred over ${\cal B}$
 - $A \sim B$ indifference between \boldsymbol{A} and \boldsymbol{B}
 - B not preferred over A $A \succeq B$

Rational Preferences

- We want some constraints on preferences before we call them rational
- For example: an agent with intransitive preferences can be induced to give away all its money
 - If B > C, then an agent with C would pay (say) 1 cent to get B
 - If A > B, then an agent with B would pay (say) 1 cent to get A
 - If C > A, then an agent with A would pay (say) 1 cent to get C



Rational Preferences

- Preferences of a rational agent must obey constraints.
 - These constraints (plus one more) are the axioms of rationality

 $(A \succ B) \lor (B \succ A) \lor (A \sim B)$ Transitivity $(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$ Continuity $A \succ B \succ C \Rightarrow \exists p \ [p, A; \ 1-p, C] \sim B$ Substitutability $A \sim B \Rightarrow [p, A; 1-p, C] \sim [p, B; 1-p, C]$ Monotonicity

 $(p \ge q \Leftrightarrow [p, A; 1-p, B] \succeq [q, A; 1-q, B])$

Theorem: Rational preferences imply behavior describable as maximization of expected utility

MEU Principle

- Theorem:
 - [Ramsey, 1931; von Neumann & Morgenstern, 1944]
 - Given any preferences satisfying these constraints, there exists a real-valued function U such that:

$$U(A) \ge U(B) \Leftrightarrow A \succeq B$$

 $U([p_1, S_1; \dots; p_n, S_n]) = \sum_i p_i U(S_i)$

- Maximum expected likelihood (MEU) principle:
 - Choose the action that maximizes expected utility
 - Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
 - E.g., a lookup table for perfect tictactoe

Human Utilities

- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment of human utilities:
 - Compare a state A to a standard lottery L_D between
 - "best possible prize" u₊ with probability p
 - "worst possible catastrophe" u_with probability 1-p
 - Adjust lottery probability p until A ~ L_n
 - Resulting p is a utility in [0,1]

Utility Scales

- Normalized utilities: u₊ = 1.0, u₋ = 0.0
- Micromorts: one-millionth chance of death, useful for paying to reduce product risks, etc
- QALYs: quality-adjusted life years, useful for medical decisions involving substantial risk
- Note: behavior is invariant under positive linear transformation

$$U'(x) = k_1 U(x) + k_2$$
 where $k_1 > 0$

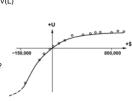
With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes

Money

- Money does not behave as a utility function
- Given a lottery L:
 - Define expected monetary value EMV(L)
 Usually U(L) < U(EMV(L))

 - I.e., people are risk-averse
- Utility curve: for what probability p am I indifferent between:

 - A lottery [p,\$M; (1-p),\$0] for large M?
- Typical empirical data, extrapolated



Example: Insurance

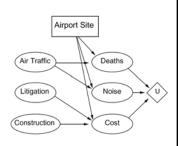
- Consider the lottery [0.5,\$1000; 0.5,\$0]?
 - What is its expected monetary value? (\$500)
 - What is its certainty equivalent?
 - Monetary value acceptable in lieu of lottery
 - \$400 for most people
 - Difference of \$100 is the insurance premium
 - There's an insurance industry because people will pay to reduce their risk
 - If everyone were risk-prone, no insurance needed!

Example: Human Rationality?

- Famous example of Allais (1953)
 - A: [0.8,\$4k; 0.2,\$0]
 - B: [1.0,\$3k; 0.0,\$0]
 - C: [0.2,\$4k; 0.8,\$0]
 - D: [0.25,\$3; 0.75,\$0]
- Most people prefer B > A, C > D
- But if U(\$0) = 0, then
 - B > A \Rightarrow U(\$3k) > 0.8 U(\$4k)
 - C > D ⇒ 0.8 U(\$4k) > U(\$3k)

Decision Networks

- Extended BNs
 - Chance nodes (circles, like in BNs)
 - Decision nodes (rectangles)
 - Utility nodes (diamonds)
- Can query to find action with max expected utility
- Online applets if you want to play with these



Value of Information

- Idea: compute value of acquiring each possible piece of evidence
 - Can be done directly from decision network
- Example: buying oil drilling rights

 Two blocks A and B, exactly one has oil, worth k

 Prior probabilities 0.5 each, mutually exclusive
- Current price of each block is k/2
- "Consultant" offers accurate survey of A. Fair price?
- Solution: compute expected value of information
- expected value of best action given the information minus expected value of best action without information

 Survey may say ``oil in A" or ``no oil in A", prob 0.5 each (given!)

 = [0.5 * value of ``buy A" given ``no oil in A"] +

 [0.5 * value of ``buy B" given ``no oil in A"]
- -0 = [0.5 * k/2] + [0.5 * k/2] 0 = k/2

General Formula

- Current evidence Ε, current best action α
- Possible action outcomes S_i , potential new evidence E_i

$$EU(\alpha|E) = \max_{a} \sum_{i} U(S_i) P(S_i|E,a)$$

• Suppose we knew $E_j = e_{jk}$, then we would choose $\alpha(e_{jk})$ s.t.

$$EU(\alpha_{e_{jk}}|E, E_j = e_{jk}) = \max_a \sum_i U(S_i) P(S_i|E, a, E_j = e_{jk})$$

BUT E; is a random variable whose value is currently unknown, so: Must compute expected gain over all possible values

$$VPI_E(E_j) = \left(\sum_k P(E_j = e_{jk}|E)EU(\alpha_{e_{jk}}|E, E_j = e_{jk})\right) - EU(\alpha|E)$$

(VPI = value of perfect information)

VPI Properties

Nonnegative in expectation

$$\forall j, E : VPI_E(E_i) \geq 0$$

Nonadditive--- onsider e a obtaining E twice $VPI_E(E_j,E_k) \neq VPI_E(E_j) + VPI_E(E_k)$

$$\bullet O^{VPI_E(E_j, E_k)} = VPI_E(E_j) + VPI_{E, E_j}(E_k)$$

$$= VPI_E(E_k) + VPI_{E, E_k}(E_j)$$

Next Class

- Start on reinforcement learning!
 - Central idea of modern AI
 - How to learn complex behaviors from simple feedback
 - Basic technique for robotic control
 - Last large technical unit of the course