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Recap: HMMs

= Hidden Markov models (HMMs)
= Underlying Markov chain over states X
= You only observe outputs (effects) E at each time step
= Want to reason about the hidden states X given observations E

$666 6

P(z1.1,e1.7) = P(x1)Plet]z1) [[ Plaslzi—1) Pleglz:)
=2

Recap: Speech Recognition

= Observations are acoustic
measurements

= Real systems: ik
= 39 MFCC coefficients B i Wb
= Real numbers, modeled with i

mixtures of multidimensional T i

Gaussians
= Your projects: /// /

= 2 real numbers (formant €12€13€1,€14€14
frequencies)

= Discretized values, discrete
conditional probs

Speech Recognition

= States indicate
which part of which 0 @ 9
word we're
speaking @ Q @
= Each word broken T
into phonemes 0 o G 6
* Real systems: T4 g

context-dependent
sub-phonemes
Your projects: just
one state per
phoneme

Pzl

05 ifa=uzq,
Plzlzg) = 0.5 if z = z4.

= Example: Yes/No 0 otherwise

recognizer 08 ifz=uzq,
Pzlz1) =402 if x =uo.
o] otherwise

Speech Recognition

= Emission probs: distribution over acoustic
observations for each phoneme
= How to learn these? See project 3!
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Example of Hidden Sequences

= For the yes/no recognizer, imagine we hear “yynooo”
= What are the scores of possible labelings?

<s> n n n [¢] o o </s> Low, but
best?
<s> y y € € s s </s> VVLlow
x <s> y y 3 B B s </s> Vliow

<s> y y n o o o </s> ZERO
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The Viterbi Algorithm

= The Viterbi algorithm computes the best labeling for an
observation sequence
= Incrementally computes best scores for subsequences
= Recurrence:
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= Also store backtraces which record the argmaxes
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Utilities

= So far: talked about beliefs

= Important difference between:
= Belief about some variables
= Rational action involving those variables
= Remember the midterm question?

= Next: utilities

Example
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Preferences

= An agent chooses among:
= Prizes: A, B, etc. A

= Lotteries: situations with L
uncertain prizes L
L=1[p, A; (1-p).B] = B
= Notation:
A=B A preferred over B
A~ B indifference between A and B
Ar- B B not preferred over A

Rational Preferences

= We want some constraints on
preferences before we call
them rational = A

= For example: an agent with le le

intransitive preferences can

be induced to give away all its

money

If B > C, then an agent with C B C
would pay (say) 1 cent to get B
If A > B, then an agent with B
would pay (say) 1 cent to get A le
If C > A, then an agent with A

would pay (say) 1 cent to get C

Rational Preferences

= Preferences of a rational agent must obey constraints.
= These constraints (plus one more) are the axioms of rationality

Orderability

(A= B)yviB=A)vid~R)
Transitivity

(A= B)A(B=C)=(A=C)
Continuity

A=B=C=3p[pA; 1=pC]l~B
Substitutability

A~B=[p.A 1-pC)~[p,B:1-pC]
Monotonicity

{ >~ B =

(pzgelpA 1-pBl= (g4 1—q.8])

= Theorem: Rational preferences imply behavior
describable as maximization of expected utility




MEU Principle

= Theorem:
= [Ramsey, 1931; von Neumann & Morgenstern, 1944]

= Given an?/ preferences satisfying these constraints, there exists
a real-valued function U such that:

U(A)>UB) & A B
U(lp1,S1: -+ pn,Snl) = ZimiU(S))

= Maximum expected likelihood (MEU) principle:
= Choose the action that maximizes expected utility

= Note: an agent can be entirely rational (consistent with MEU)
without ever representing or manipulating utilities and
probabilities

= E.g., a lookup table for perfect tictactoe

Human Utilities

= Utilities map states to real numbers. Which numbers?
= Standard approach to assessment of human utilities:
= Compare a state A to a standard lottery L, between
= “‘best possible prize" u, with probability p
= “‘worst possible catastrophe” u_with probability 1-p
= Adjust lottery probability p until A ~ L,
= Resulting p is a utility in [0,1]

continue as before

0.999999

pay $30 ~ L

instant death

Utility Scales

= Normalized utilities: u, = 1.0, u.=0.0

= Micromorts: one-millionth chance of death, useful for paying to
reduce product risks, etc.

= QALYs: quality-adjusted life years, useful for medical decisions
involving substantial risk

= Note: behavior is invariant under positive linear transformation

U'(x) = kiU(z) + ko where k1 >0

= With deterministic prizes only (no lottery choices), only ordinal utility
can be determined, i.e., total order on prizes

Money

= Money does not behave as a utility
function

= Given a lottery L:
= Define expected monetary value EMV(L)
= Usually U(L) < U(EMV(L))
= l.e., people are risk-averse

= Utility curve: for what probability p W
am | indifferent between: '

-150,000 800,000

= A prize x
= Alottery [p,$M; (1-p),$0] for large M?

= Typical empirical data, extrapolated
with risk-prone behavior: -

Example: Insurance

= Consider the lottery [0.5,$1000; 0.5,$0]?
= What is its expected monetary value? ($500)
= What is its certainty equivalent?
= Monetary value acceptable in lieu of lottery
= $400 for most people
= Difference of $100 is the insurance premium

= There’s an insurance industry because people will pay to
reduce their risk

= If everyone were risk-prone, no insurance needed!

Example: Human Rationality?

= Famous example of Allais (1953)

= A:[0.8,%4k; 0.2,$0]
= B:[1.0,$3k; 0.0,$0]

= C:[0.2,$4k; 0.8,$0]
= D: [0.25,$3; 0.75,$0]

= Most people prefer B> A, C>D
= But if U($0) = 0, then

= B> A= U($3k) > 0.8 U($4k)

= C>D = 0.8 U($4k) > U($3k)




Decision Networks

= Extended BNs
= Chance nodes
(circles, like in BNs)
= Decision nodes
(rectangles)
= Utility nodes
(diamonds)
= Can query to find
action with max
expected utility

Online applets if @_
you want to play

with these

Value of Information

= |dea: compute value of acquiring each possible piece of evidence
= Can be done directly from decision network

= Example: buying oil drilling rights
= Two blocks A and B, exactly one has oil, worth k
= Prior probabilities 0.5 each, mutually exclusive
= Current price of each block is k/2
= “'Consultant” offers accurate survey of A. Fair price?

= Solution: compute expected value of information
= expected value of best action given the information minus expected
value of best action without information
= Survey may say " oil in A" or “"no oil in A", prob 0.5 each (given!)
=[0.5 * value of ““buy A" given “oil in A"] +
[0.5 * value of ““buy B" given “"no oil in A"]

=[0.5*Kk/2] +[0.5 * k/2] - 0 = k2

General Formula

Current evidence E, current best action o
Possible action outcomes S;, potential new evidence EJ

EU(a|E) = max ¥, U(S;) P(Si|E,a)

= Suppose we knew E; = g, then we would choose G(E,k) s.t.
BU(ac,|EB, Ej = eji) = mfxz U(S;) P(Si|E,a, B = ej)
2

= BUTE is a random variable whose value is currently unknown, so:
= Must compute expected gain over all possible values

VPIp(E;) = (Z P(Ej = ejp| EYEU (e i | E, By = e]-k)) —EU(alE)
k

= (VPI = value of perfect information)

VPI Properties

= Nonnegative in expectation
Vi, E:VPIg(E;) >0

= Nanadditive--- onsider e o _ohtainina F. twice
VPIg(ly, Ey) # VPIg(E;) + VPIp(Ey)

VPIE(E]', E,) = VPIE(Ej) + VPIE‘,E_,-(Ek)
= VPIg(E,) + VPIg g (F;)

=0

Next Class

= Start on reinforcement learning!
= Central idea of modern Al

= How to learn complex behaviors from simple
feedback

= Basic technique for robotic control
= Last large technical unit of the course




