CS 188: Artificial Intelligence Spring 2006

Lecture 21: MDPs 4/6/2006

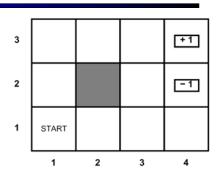
Dan Klein - UC Berkeley

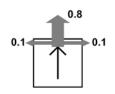
Reinforcement Learning

- [Demos]
- Basic idea:
 - Receive feedback in the form of rewards
 - Must learn to act so as to maximize expected rewards
 - Agent's utility is defined by the reward function
 - Change the rewards, change the behavior!
- Examples:
 - Playing a game, reward at the end for winning / losing
 - Vacuuming a house, reward for each piece of dirt picked up
 - Automated taxi, reward for each passenger delivered

Markov Decision Processes

- Markov decision processes (MDPs)
 - A set of states s ∈ S
 - A model T(s,a,s') = P(s' | s,a)
 - Probability that action a in state s leads to s'
 - A reward function R(s) (or R(s,a,s'))
- MDPs are the simplest case of reinforcement learning
 - In general reinforcement learning, we don't know the model or the reward function

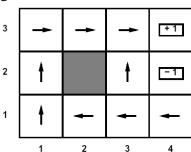


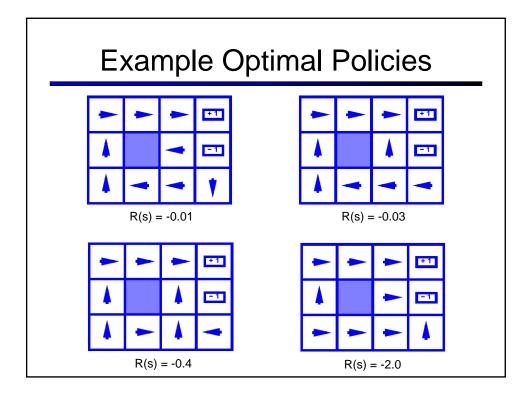


MDP Solutions

- In state-space search, want an optimal sequence of actions from start to a goal
- In an MDP, want an optimal policy $\pi(s)$
 - A policy gives an action for each state
 - Optimal policy is the one which maximizes expected utility (i.e. expected rewards) if followed
 - Gives a reflex agent!

Optimal policy when R(s) = -0.04:





Stationarity

- In order to formalize optimality of a policy, need to understand utilities of reward sequences
- Typically consider stationary preferences:

$$[r, r_0, r_1, r_2, \ldots] \succ [r, r'_0, r'_1, r'_2, \ldots]$$
 \Leftrightarrow
 $[r_0, r_1, r_2, \ldots] \succ [r'_0, r'_1, r'_2, \ldots]$

- Theorem: only two ways to define stationary utilities
 - Additive utility:

$$U([s_0, s_1, s_2, \ldots]) = R(s_0) + R(s_1) + R(s_2) + \cdots$$

Discounted utility:

$$U([s_0, s_1, s_2, \ldots]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) \cdots$$

How (Not) to Solve an MDP

- The inefficient way:
 - Enumerate policies
 - Calculate the expected utility (discounted rewards) starting from the start state
 - . E.g. by simulating a bunch of runs
 - Choose the best policy
- We'll return to a (better) idea like this later

Utilities of States

Idea: calculate the utility (value) of each state

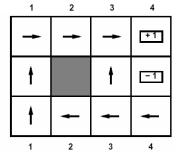
> U(s) = expected (discounted) sum of rewards assuming optimal actions

Given the utilities of states,
 MEU tells us the optimal policy 3

$$\pi^U(s) = \arg\max_a E_{P(s'|a,s)} U(s') \quad \ \ _{\mathbf{2}}$$

$$= \arg\max_a U(s') T(s,a,s') \quad \ \ _{\mathbf{1}}$$

0.812	0.868	0.912	+1
0.762		0.660	-1
0.705	0.655	0.611	0.388



Infinite Utilities?!

- Problem: infinite state sequences with infinite rewards
- Solutions:
 - Finite horizon:
 - Terminate after a fixed T steps
 - Gives nonstationary policy (π depends on time left)
 - Absorbing state(s): guarantee that for every policy, agent will eventually "die"
 - Discounting: for $0 < \gamma < 1$

$$U([s_0, \dots s_\infty]) = \sum_{t=0}^{\infty} \gamma^t R(s_t) \le R_{\mathsf{max}}/(1-\gamma)$$

• Smaller γ means smaller horizon

The Bellman Equation

 Definition of state utility leads to a simple relationship amongst utility values:

> Expected rewards = current reward + γ x expected sum of rewards after taking best action

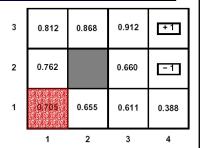
Formally:

$$U(s) = R(s) + \gamma \max_{a} E_{P(s'|a,s)} U(s')$$

$$= R(s) + \gamma \max_{a} \sum_{s'} U(s') T(s,a,s')$$

$$= R(s) + \gamma \sum_{s'} U(s') T(s,\pi^U(a),s')$$

Example: Bellman Equations



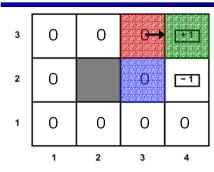
$$\begin{split} U(1,1) &= -0.04 \\ &+ \gamma \, \max\{0.8U(1,2) + 0.1U(2,1) + 0.1U(1,1), \quad up \\ &0.9U(1,1) + 0.1U(1,2) \qquad \qquad left \\ &0.9U(1,1) + 0.1U(2,1) \qquad \qquad down \\ &0.8U(2,1) + 0.1U(1,2) + 0.1U(1,1)\} \quad \textit{right} \end{split}$$

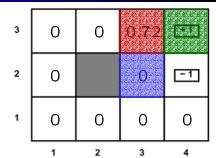
Value Iteration

- Idea:
 - Start with bad guesses at utility values (e.g. U₀(s) = 0)
 - Update using the Bellman equation (called a value update or Bellman update):

$$U_{i+1}(s) = R(s) + \gamma \max_{a} E_{P(s'|a,s)} U_i(s')$$
$$= R(s) + \gamma \max_{a} \sum_{s'} U_i(s') T(s, a, s')$$

- Repeat until convergence
- Theorem: will converge to unique optimal values
 - Basic idea: bad guesses get refined towards optimal values
 - Policy may converge before values do



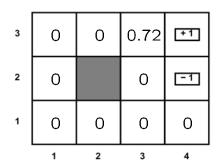


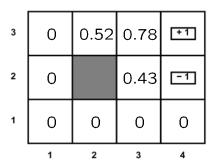
$$U_{i+1}(s) = R(s) + \gamma \max_{a} \sum_{s'} U_i(s') T(s, a, s')$$

$$= 0 + 0.9 \sum_{s'} U_i(s') T(\langle 3, 3 \rangle, \text{right}, s')$$

$$= 0 + 0.9 [0.8 \cdot 1 + 0.1 \cdot 0 + 0.1 \cdot 0]$$

Example: Value Iteration





- Information propagates outward from terminal states and eventually all states have correct value estimates
- [DEMO]

Convergence*

- Define the max-norm: $||U|| = \max_s |U(s)|$
- Theorem: For any two approximations U and V

$$||U^{t+1} - V^{t+1}|| \le \gamma ||U^t - V^t||$$

- I.e. any distinct approximations must get closer to each other, so, in particular, any approximation must get closer to the true U and value iteration converges to a unique, stable, optimal solution
- Theorem:

$$||U^{t+1} - U^t|| < \epsilon, \Rightarrow ||U^{t+1} - U|| < 2\epsilon\gamma/(1 - \gamma)$$

 I.e. one the change in our approximation is small, it must also be close to correct

Policy Iteration

- Alternate approach:
 - Policy evaluation: calculate utilities for a fixed policy
 - Policy improvement: update policy based on resulting utilities
 - Repeat until convergence
- This is policy iteration
 - Can converge faster under some conditions

Policy Evaluation

• If we have a fixed policy π , use simplified Bellman equation to calculate utilities:

$$U_{i+1}^{\pi}(s) = R(s) + \gamma \sum_{s'} U_i(s') T(s, \pi(s), s')$$

Policy Improvement

 For fixed utilities, easy to find the best action according to one-step lookahead

$$\pi_{i+1}^U(s) = \arg\max_{a} \sum_{s'} U(s') T(s,a,s')$$

Comparison

- In value iteration:
 - Every pass (or "backup") updates both policy (based on current utilities) and utilities (based on current policy
- In policy iteration:
 - Several passes to update utilities
 - Occasional passes to update policies
- Hybrid approaches (asynchronous policy iteration):
 - Any sequences of partial updates to either policy entries or utilities will converge if every state is visited infinitely often

Next Class

- In real reinforcement learning:
 - Don't know the reward function R(s)
 - Don't know the model T(s,a,s')
 - So can't do Bellman updates!
- Need new techniques:
 - Q-learning
 - Model learning
 - Agents actually have to interact with the environment rather than simulate it!