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Reinforcement Learning

= [Demos]

= Basic idea:
= Receive feedback in the form of rewards
= Must learn to act so as to maximize expected rewards
= Agent’s utility is defined by the reward function
= Change the rewards, change the behavior!

= Examples:
= Playing a game, reward at the end for winning / losing
= Vacuuming a house, reward for each piece of dirt picked up
= Automated taxi, reward for each passenger delivered




Markov Decision Processes

= Markov decision processes 3
(MDPs)
= Asetofstatess € S
* Amodel T(s,a,s) = P(s’ | s,a) 2 =
= Probability that action a in state s
leads to s’
= A reward function R(s) (or b
R(s,a,s))
1 2 3 4

= MDPs are the simplest case of
reinforcement learning 08

= In general reinforcement learning, 0.1 0.1
we don’'t know the model or the
reward function

MDP Solutions

= |n state-space search, want an optimal sequence of
actions from start to a goal

= In an MDP, want an optimal policy n(s)
= A policy gives an action for each state

= Optimal policy is the one which maximizes expected utility (i.e.
expected rewards) if followed

= Gives a reflex agent!
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when R(s) = -0.04:




Example Optimal Policies
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Stationarity

= |n order to formalize optimality of a policy, need to
understand utilities of reward sequences

= Typically consider stationary preferences:
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= Theorem: only two ways to define stationary utilities
= Additive utility:
U([s0,51,52,.-.]) = R(s0) + R(s1) + R(s2) + -~
= Discounted utility:
U([s0, 51,52, ...]) = R(sg) +vR(s1)+v2R(sp) - - -




How (Not) to Solve an MDP

= The inefficient way:
= Enumerate policies

» Calculate the expected utility (discounted
rewards) starting from the start state
= E.g. by simulating a bunch of runs

» Choose the best policy

= We'll return to a (better) idea like this later

Utilities of States

* |dea: calculate the utility 3 | o812 [ oses | 0912
(value) of each state
2 0.762 0.660
U(s) = expected (discounted) :- =
sum of rewards assuming optimal
actions 1 0.705 0.655 0.611 0.388
= Given the utilities of states, ! 2 } !
MEU tells us the optimal policy : | — —
=1

WU(S):arggwapr(s/‘a’s)U(Sl) 2 | | . t

=argmaxU(s)T(s,a,s") 1
a




Infinite Utilities?!

= Problem: infinite state sequences with infinite rewards

= Solutions:
= Finite horizon:
= Terminate after a fixed T steps
= Gives nonstationary policy (n depends on time left)

= Absorbing state(s): guarantee that for every policy, agent will
eventually “die”

= Discounting: forO<y<1

U([s0;---8]) = Z WtR(St) < Rmax/(1 =)
t=0

= Smaller y means smaller horizon

The Bellman Equation

= Definition of state utility leads to a simple relationship
amongst utility values:

Expected rewards = current reward +
v X expected sum of rewards after taking best action

= Formally:
U(s) = R(s) + v max Ep(y|4,5U(s")
= R(s) 4+~ mgxz U(sNT(s,a,s)
S/

= R(s) +7 D> U(s)T(s,7"(a),s)

s




Example: Bellman Equations

3 0.912

2 0660 | =1

1 0611 | 0.388
1 2 3 4

U(1,1) = —0.04
+ v max{0.8U(1,2)+0.1U(2,1)4+0.1U(1,1), up
0.9U(1,1) 4+ 0.1U(1,2) left
0.9U(1,1) 4+ 0.1U(2,1) down
0.8U(2,1)+0.1U(1,2)40.1U(1,1)} right

Value Iteration

* |dea:
= Start with bad guesses at utility values (e.g. Uy(s) = 0)
= Update using the Bellman equation (called a value update or
Bellman update):

UZ'_|_1(S) = R(S) + ¥ maax EP(s’|a,s)Ui(S/)
= R() + 7 max Y Ui(HT(s0,)
S
= Repeat until convergence

= Theorem: will converge to unique optimal values
= Basic idea: bad guesses get refined towards optimal values
= Policy may converge before values do




Example: Bellman Updates

Ui+1(s) = R(s) +~ m;lxz U;(sNT(s,a,s")

S

=0+ 0.9 > U;(s)T((3,3),right, s")

s
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Example: Value Iteration

3 0

2 0

1 0 0 0 0 1 0 0 0 0
1 2 3 4 1 2 3 4

= |Information propagates outward from terminal
states and eventually all states have correct
value estimates

= [DEMO]




Convergence*

» Define the max-norm: ||U|| = maxs |U(s)|

= Theorem: For any two approximations U and V
U — VI < 5 (Ut = VY|

= |.e. any distinct approximations must get closer to each other, so,
in particular, any approximation must get closer to the true U and
value iteration converges to a unique, stable, optimal solution

= Theorem:
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= |.e. one the change in our approximation is small, it must also be
close to correct

Policy Iteration

= Alternate approach:
= Policy evaluation: calculate utilities for a fixed policy
= Policy improvement: update policy based on resulting
utilities
= Repeat until convergence

» This is policy iteration
= Can converge faster under some conditions




Policy Evaluation

= |f we have a fixed policy =, use simplified
Bellman equation to calculate utilities:

UFy1(s) = R(s) 4+ 3 Ui(sHT(s,7(s), )

S8

Policy Improvement

= For fixed utilities, easy to find the best action
according to one-step lookahead

ng_l(s) =argmax) U(sNT(s,a,s)
a /

8




Comparison

= |n value iteration:
= Every pass (or “backup”) updates both policy (based on current
utilities) and utilities (based on current policy

= In policy iteration:
= Several passes to update utilities
= QOccasional passes to update policies

= Hybrid approaches (asynchronous policy iteration):

= Any sequences of partial updates to either policy entries or
utilities will converge if every state is visited infinitely often

Next Class

» |n real reinforcement learning:
= Don’t know the reward function R(s)
= Don’t know the model T(s,a,s’)
= So can’t do Bellman updates!

» Need new techniques:
= Q-learning
= Model learning

= Agents actually have to interact with the environment
rather than simulate it!
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