Reinforcement Learning

- Basic idea:
 - Receive feedback in the form of rewards
 - Must learn to act so as to maximize expected rewards
 - Agent’s utility is defined by the reward function
 - Change the rewards, change the behavior!

- Examples:
 - Playing a game, reward at the end for winning / losing
 - Vacuuming a house, reward for each piece of dirt picked up
 - Automated taxi, reward for each passenger delivered

Markov Decision Processes

- A set of states \(s \in S \)
- A model \(T(s, a, s') = P(s' | s, a) \)
 - Probability that action \(a \) in state \(s \) leads to \(s' \)
- A reward function \(R(s) \) (or \(R(s, a, s') \))

MDPs are the simplest case of reinforcement learning
- In general reinforcement learning, we don’t know the model or the reward function

Example Optimal Policies

- In state-space search, want an optimal sequence of actions from start to a goal
- In an MDP, want an optimal policy \(\pi(s) \)
 - A policy gives an action for each state
 - Optimal policy is the one which maximizes expected utility (i.e. expected rewards) if followed
 - Gives a reflex agent!

Stationarity

- In order to formalize optimality of a policy, need to understand utilities of reward sequences
- Typically consider stationary preferences:
 \[[r_0, r_1, r_2, \ldots] > [r'_0, r'_1, r'_2, \ldots] \]
 \[[r_0, r_1, r_2, \ldots] \Rightarrow [r'_0, r'_1, r'_2, \ldots] \]
- Theorem: only two ways to define stationary utilities
 - Additive utility:
 \[U((s_0, s_1, s_2, \ldots)) = R(s_0) + R(s_1) + R(s_2) + \cdots \]
 - Discounted utility:
 \[U((s_0, s_1, s_2, \ldots)) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots \]
How (Not) to Solve an MDP

- The inefficient way:
 - Enumerate policies
 - Calculate the expected utility (discounted rewards) starting from the start state
 - E.g. by simulating a bunch of runs
 - Choose the best policy
 - We’ll return to a (better) idea like this later

Utilities of States

- Idea: calculate the utility (value) of each state
 \[U(s) = \text{expected (discounted)} \]
 \[\text{sum of rewards assuming optimal actions} \]
- Given the utilities of states, MEU tells us the optimal policy
 \[\pi^*(s) = \arg \max_a E_p(\gamma, s, a) U(s') \]
 \[= \arg \max_a U(s') T(s, a, s') \]

Infinite Utilities?!

- Problem: infinite state sequences with infinite rewards
- Solutions:
 - Finite horizon:
 - Terminal after a fixed T steps
 - Gives nonstationary policy (π depends on time left)
 - Absorbing state(s): guarantee that for every policy, agent will eventually “die”
 - Discounting: for \(0 < \gamma < 1 \)
 \[U((s_0, \ldots, s_N)) = \sum_{k=0}^{\infty} \gamma^k R(s_k) \leq R_{\text{max}}/(1 - \gamma) \]
 - Smaller \(\gamma \) means smaller horizon

The Bellman Equation

- Definition of state utility leads to a simple relationship amongst utility values:
 \[U(s) = R(s) + \gamma \max_a E_p(\gamma, s, a) U(s') \]
 \[= R(s) + \gamma \max_a U(s') T(s, a, s') \]
 \[= R(s) + \gamma \sum_{s'} U(s') T(s, \pi^*(a), s') \]

Example: Bellman Equations

- Initial utility function
 \[U(1, 1) = -0.04 + \gamma \max(0.8U(1, 2) + 0.1U(2, 1) + 0.1U(1, 1), 0.9U(1, 1) + 0.1U(1, 2), 0.9U(1, 1) + 0.1U(2, 1), 0.8U(2, 1) + 0.1U(1, 2) + 0.1U(1, 1)) \]

Value Iteration

- Idea:
 - Start with bad guesses at utility values (e.g. \(U_0(s) = 0 \))
 - Update using the Bellman equation (called a value update or Bellman update):
 \[U_{i+1}(s) = R(s) + \gamma \max_a E_p(\gamma, s, a) U_i(s') \]
 \[= R(s) + \gamma \max_a \sum_{s'} U_i(s') T(s, a, s') \]
 - Repeat until convergence
- Theorem: will converge to unique optimal values
 - Basic idea: bad guesses get refined towards optimal values
 - Policy may converge before values do
Example: Bellman Updates

\[U_{t+1}(s) = R(s) + \gamma \sum_{s'} U_{t}(s')P(s,a,s') \]

\[= 0 + 0.9 \sum_{s'} U_{t}(s')P((3,3) \text{, right, } s') \]

\[= 0 + 0.9 \left[0.8 \cdot 1 + 0.1 \cdot 0 + 0.1 \cdot 0 \right] \]

Example: Value Iteration

Information propagates outward from terminal states and eventually all states have correct value estimates

[DEMO]

Convergence*

- Define the max-norm: \(|U| = \max_{s} |U(s)| \)
- Theorem: For any two approximations \(U \) and \(V \)

\[||U^{t+1} - V^{t+1}|| \leq \gamma ||U^t - V^t|| \]

- I.e. any distinct approximations must get closer to each other, so, in particular, any approximation must get closer to the true \(U \) and value iteration converges to a unique, stable, optimal solution
- Theorem:

\[||U^{t+1} - U|| < \epsilon, \Rightarrow ||U^{t+1} - U|| < 2\epsilon/(1-\gamma) \]

- I.e. once the change in our approximation is small, it must also be close to correct

Policy Iteration

- Alternate approach:
 - Policy evaluation: calculate utilities for a fixed policy
 - Policy improvement: update policy based on resulting utilities
 - Repeat until convergence
- This is policy iteration
 - Can converge faster under some conditions

Policy Evaluation

- If we have a fixed policy \(\pi \), use simplified Bellman equation to calculate utilities:

\[U^{t+1}_\pi(s) = R(s) + \gamma \sum_{a} U_{t}(s')P(s, \pi(s), s') \]

Policy Improvement

- For fixed utilities, easy to find the best action according to one-step lookahead

\[\pi^U_{t+1}(s) = \arg \max_{a} \sum_{s'} U(s')P(s, a, s') \]
Comparison

- In value iteration:
 - Every pass (or "backup") updates both policy (based on current utilities) and utilities (based on current policy)

- In policy iteration:
 - Several passes to update utilities
 - Occasional passes to update policies

- Hybrid approaches (asynchronous policy iteration):
 - Any sequences of partial updates to either policy entries or utilities will converge if every state is visited infinitely often

Next Class

- In real reinforcement learning:
 - Don't know the reward function $R(s)$
 - Don't know the model $T(s,a,s')$
 - So can't do Bellman updates!

- Need new techniques:
 - Q-learning
 - Model learning
 - Agents actually have to interact with the environment rather than simulate it!