CS 188: Artificial Intelligence
Spring 2006

Lecture 21: MDPs
4/6/2006

Dan Klein — UC Berkeley

Reinforcement Learning

= [Demos]

= Basic idea:
= Receive feedback in the form of rewards
= Must learn to act so as to maximize expected rewards
= Agent’s utility is defined by the reward function
= Change the rewards, change the behavior!

= Examples:
= Playing a game, reward at the end for winning / losing
= Vacuuming a house, reward for each piece of dirt picked up
= Automated taxi, reward for each passenger delivered

Markov Decision Processes

MDP Solutions

= Markov decision processes 3
(MDPs)

E

* Asetofstatess € S
= Amodel T(s,a,s’) =P(s' | s,a) 2
= Probability that action a in state s

£

leads to s’

= A reward function R(s) (or
R(s,a,s"))

1 START

= MDPs are the simplest case of
reinforcement learning 08
= In general reinforcement learning, 01 0.1
we don't know the model or the
reward function

= |n state-space search, want an optimal sequence of
actions from start to a goal

= |n an MDP, want an optimal policy n(s)
= A policy gives an action for each state

= Optimal policy is the one which maximizes expected utility (i.e.
expected rewards) if followed

Gives a reflex agent!

3 —_—

—_—
Optimal policy 2 ' . 1 (|
when R(s) =-0.04:

-—

Example Optimal Policies

= ||| =|=|=|

[- | [A |
R(s) =-0.01 R(s) =-0.03
||| -|=|=|C@
) A | [=
b|=|d]|= o b R L

R(s) =-0.4 R(s) =-2.0

Stationarity

= In order to formalize optimality of a policy, need to
understand utilities of reward sequences

= Typically consider stationary preferences:

[r,r0, 71,72,] = [y vy 7,75,
&
[rovresro, ..) > Gyl rh,)
= Theorem: only two ways to define stationary utilities
= Additive utility:
U([s0, 81,52, ...1) = R(sp) + R(s1) + R(s2) + - -~
= Discounted utility:
U([s0, 51,52, --.]) = R(so)+vR(s1)+7?R(s2) - --

How (Not) to Solve an MDP

= The inefficient way:
= Enumerate policies

= Calculate the expected utility (discounted
rewards) starting from the start state
= E.g. by simulating a bunch of runs
= Choose the best policy

= We'll return to a (better) idea like this later

Utilities of States

= Idea: calculate the utility 3| osiz | omes | 0m2 | [FT]

(value) of each state
2 0.762 0660
U(s) = expected (discounted) . =0

sum of rewards assuming optimal
0.705 0.655 0611 0.388

actions
= Given the utilities of states, ! 2 : 4
MEU tells us the optimal policy 3 | o« | = | —)
7V(s) = arg max Ep(yiqoU(s) 5 { . t |3

=arg maxU(s)T(s,a,5") b= ==
a

Infinite Utilities?!

= Problem: infinite state sequences with infinite rewards

= Solutions:
= Finite horizon:
= Terminate after a fixed T steps
= Gives nonstationary policy (= depends on time left)
= Absorbing state(s): guarantee that for every policy, agent will
eventually “die”
= Discounting: for0<y<1

U([sg, - - - Ss0)) = io: Y R(s1) < Rmax/(1 =)
t=0

= Smaller y means smaller horizon

The Bellman Equation

= Definition of state utility leads to a simple relationship
amongst utility values:

Expected rewards = current reward +
v x expected sum of rewards after taking best action

= Formally:
U(s) = R(5) + v Max Ep(yja.sU(s)

=R(s)+~ max Z U(s"YT(s,a,s")

= R(s) +~ S U(NT(s,7Y(a), s}

Example: Bellman Equations

3 092 | 1]

2 weso | 1]

1 0611 | 0388
3 4

U(1,1) = —0.04
+ v max{0.8U(1,2)40.1U(2,1)+0.1U(1,1), up
0.9U(1,1) + 0.1U(1,2) left
0.9U(1,1) + 0.1U(2,1) down
0.8U(2,1)40.1U(1,2)4+0.1U(1,1)} right

Value lteration

= |dea:
= Start with bad guesses at utility values (e.g. Uy(s) = 0)
= Update using the Bellman equation (called a value update or
Bellman update):

Uit1(s) = R(s) + v max Ep(y}, Ui(s)
_ N ’
=R(s)+~ maaxz/ Ui ()T (s,a,s")
5
= Repeat until convergence
= Theorem: will converge to unique optimal values

= Basic idea: bad guesses get refined towards optimal values
= Policy may converge before values do

Example: Bellman Updates

Uis1(s) = R(s) + v max 3 U(sHT(s.a,5')

s

= 0+ 0.9 3" Ui(s")T((3.3). right. ")
’

&

=0+409[08-1401-040.1-0]

Example: Value Iteration

3 0 0 |0.72| 1O 3 0 |0.52|0.78

E

1 0 0 0 0 1 0 0 0 0

1 2 3 4 1 2 3 4

= |Information propagates outward from terminal
states and eventually all states have correct
value estimates

= [DEMO]

Convergence*

= Define the max-norm: ||U|| = max; |U(s)

= Theorem: For any two approximations U and V
U — vl <y ot - v
= |.e. any distinct approximations must get closer to each other, so,

in particular, any approximation must get closer to the true U and
value iteration converges to a unique, stable, optimal solution

= Theorem:
UL U <6, = UM —U|| < 2ev/(1 —7)

= |.e. one the change in our approximation is small, it must also be
close to correct

Policy Iteration

= Alternate approach:
= Policy evaluation: calculate utilities for a fixed policy
= Policy improvement: update policy based on resulting
utilities
= Repeat until convergence

= This is policy iteration
= Can converge faster under some conditions

Policy Evaluation

= |f we have a fixed policy =, use simplified
Bellman equation to calculate utilities:

Ul 1(8) = R(s) + D U(sHT(s,7(s), ")

Policy Improvement

= For fixed utilities, easy to find the best action
according to one gep lookahead

ﬂgi_l(s) = arg (Enax Z U(sNT(s,a,s")
S/

Comparison

= |n value iteration:

= Every pass (or “backup”) updates both policy (based on current
utilities) and utilities (based on current policy

= In policy iteration:
= Several passes to update utilities
= Occasional passes to update policies

= Hybrid approaches (asynchronous policy iteration):

= Any sequences of partial updates to either policy entries or
utilities will converge if every state is visited infinitely often

Next Class

= |n real reinforcement learning:
= Don’t know the reward function R(s)
= Don't know the model T(s,a,s’)
= So can't do Bellman updates!

= Need new techniques:
= Q-learning
= Model learning

= Agents actually have to interact with the environment
rather than simulate it!

