
1

CS 188: Artificial Intelligence
Spring 2006

Lecture 21: MDPs
4/6/2006

Dan Klein – UC Berkeley

Reinforcement Learning
[Demos]

Basic idea:
Receive feedback in the form of rewards
Must learn to act so as to maximize expected rewards
Agent’s utility is defined by the reward function
Change the rewards, change the behavior!

Examples:
Playing a game, reward at the end for winning / losing
Vacuuming a house, reward for each piece of dirt picked up
Automated taxi, reward for each passenger delivered

Markov Decision Processes
Markov decision processes 
(MDPs)

A set of states s ∈ S
A model T(s,a,s’) = P(s’ | s,a)

Probability that action a in state s 
leads to s’

A reward function R(s) (or 
R(s,a,s’) )

MDPs are the simplest case of 
reinforcement learning

In general reinforcement learning, 
we don’t know the model or the 
reward function

MDP Solutions
In state-space search, want an optimal sequence of 
actions from start to a goal
In an MDP, want an optimal policy π(s)

A policy gives an action for each state
Optimal policy is the one which maximizes expected utility (i.e.
expected rewards) if followed
Gives a reflex agent!

Optimal policy 
when R(s) = -0.04:

Example Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Stationarity
In order to formalize optimality of a policy, need to 
understand utilities of reward sequences
Typically consider stationary preferences:

Theorem: only two ways to define stationary utilities
Additive utility:

Discounted utility:



2

How (Not) to Solve an MDP

The inefficient way:
Enumerate policies
Calculate the expected utility (discounted 
rewards) starting from the start state

E.g. by simulating a bunch of runs
Choose the best policy

We’ll return to a (better) idea like this later

Utilities of States

Idea: calculate the utility 
(value) of each state

U(s) = expected (discounted) 
sum of rewards assuming optimal 
actions

Given the utilities of states, 
MEU tells us the optimal policy

Infinite Utilities?!

Problem: infinite state sequences with infinite rewards

Solutions:
Finite horizon:

Terminate after a fixed T steps
Gives nonstationary policy (π depends on time left)

Absorbing state(s): guarantee that for every policy, agent will 
eventually “die”
Discounting: for 0 < γ < 1

Smaller γ means smaller horizon

The Bellman Equation

Definition of state utility leads to a simple relationship 
amongst utility values:

Expected rewards = current reward +
γ x expected sum of rewards after taking best action

Formally:

Example: Bellman Equations Value Iteration
Idea:

Start with bad guesses at utility values (e.g. U0(s) = 0)
Update using the Bellman equation (called a value update or
Bellman update):

Repeat until convergence

Theorem: will converge to unique optimal values
Basic idea: bad guesses get refined towards optimal values
Policy may converge before values do



3

Example: Bellman Updates Example: Value Iteration

Information propagates outward from terminal 
states and eventually all states have correct 
value estimates
[DEMO]

Convergence*
Define the max-norm:

Theorem: For any two approximations U and V

I.e. any distinct approximations must get closer to each other, so, 
in particular, any approximation must get closer to the true U and 
value iteration converges to a unique, stable, optimal solution

Theorem:

I.e. one the change in our approximation is small, it must also be 
close to correct

Policy Iteration

Alternate approach:
Policy evaluation: calculate utilities for a fixed policy
Policy improvement: update policy based on resulting 
utilities
Repeat until convergence

This is policy iteration
Can converge faster under some conditions

Policy Evaluation

If we have a fixed policy π, use simplified 
Bellman equation to calculate utilities:

Policy Improvement

For fixed utilities, easy to find the best action 
according to one- step lookahead



4

Comparison
In value iteration:

Every pass (or “backup”) updates both policy (based on current 
utilities) and utilities (based on current policy

In policy iteration:
Several passes to update utilities
Occasional passes to update policies

Hybrid approaches (asynchronous policy iteration):
Any sequences of partial updates to either policy entries or 
utilities will converge if every state is visited infinitely often

Next Class

In real reinforcement learning:
Don’t know the reward function R(s)
Don’t know the model T(s,a,s’)
So can’t do Bellman updates!

Need new techniques:
Q-learning
Model learning
Agents actually have to interact with the environment 
rather than simulate it!


