CS 188: Atrtificial Intelligence
Spring 2006

Lecture 22: Reinforcement Learning |l
4/13/2006

Dan Klein — UC Berkeley

Today

= Reminder: P3 lab Friday, 2-4pm, 275 Soda

» Reinforcement learning
= Temporal-difference learning
= Q-learning
= Function approximation

Recap: Passive Learning

» Learning about an unknown MDP | =|—=|~|em

<t . t |

= Simplified task ===
= You don’'t know the transitions T(s,a,s’) roor

* You don’'t know the rewards R(S)
= You DO know the policy =n(S)
= Goal: learn the state values (and maybe the model)

» Last time: try to learn T, R and then solve as a
known MDP

Model-Free Learning

= Big idea: why bother learning T?
= Update each time we experience a transition
= Frequent outcomes will contribute more updates (over time)

= Temporal difference learning (TD)
= Policy still fixed!
= Move values toward value of whatever successor occurs

U™(s) = R(s) +~ > UT(sNT(s,7(s),s)

S

U™(s) — U™(s) + a (R(s) + 7 U™(s) = U™(s))

UT(5) — (1 = a)U"(s) +a (R(s) + 7 UT(s))

Example: Passive TD

U”(s)<—U7T(s)—|—a(R(s)—|—’yU”(s/)—U”(s)) J=T=T=

52
(1,1) -1 up (1,1) -1 up o . b=
(1,2)-1up (1,2) -1 up ===
(1,2) -1 up (1,3) -1 right o
(1,3) -1 right (2,3) -1 right
(2,3) -1 right (3,3) -1 right 3
(3,3) -1 right (3,2) -1 up
(3,2) -1 up (4,2) -100 2 .
(3,3) -1 right
(4,3) +100 !

Takey=1,a0=0.1 1 2 3

(Greedy) Active Learning

* |n general, want to learn the optimal policy

= |dea:
= Learn an initial model of the environment:

= Solve for the optimal policy for this model (value or
policy iteration)

» Refine model through experience and repeat

Example: Greedy Active Learning

» Imagine we find the lower
path to the good exit first

= Some states will never be
visited following this policy
from (1,1)

= We'll keep re-using this
policy because following it
never collects the regions
of the model we need to
learn the optimal policy

3

!

£

What Went Wrong?

= Problem with following optimal
policy for current model:

= Never learn about better regions
of the space

* Fundamental tradeoff:
exploration vs. exploitation

= Exploration: must take actions
with suboptimal estimates to
discover new rewards and
increase eventual utility

= Exploitation: once the true
optimal policy is learned,
exploration reduces utility

* Systems must explore in the
beginning and exploit in the limit

2

!

£

Q-Functions

= Alternate way to learn:

= Ultilities for state-action pairs rather than states
= AKA Q-functions

Q(a,s) = R(s) + 7D T(s,a,s) maxQ(d,s")

U(s) = maxQ(a,s)
a 3 | o812 | 0ses | 0912

U(3,2) = 0.660 7(3,2) = up

0.762

Q(right, (3,2)) = —0.535

1 0.705 0.655 0.611 0.388

Learning Q-Functions: MDPs

= Just like Bellman updates for state values:
» For fixed policy ©

Qﬁ_l(a, s) «— R(s) + ’yZT(s, a, SI)Q?(W(S/), s

)
= For optimal policy

Qi—|—l(a7 S) — R(S) + v Z T(87 a, S/) m?X Qi(a’,7 S/)

s

» Main advantage of Q-functions over values U is
that you don’t need a model for learning or
action selection!

Q-Learning

= Model free, TD learning with Q-functions:
Qi+l(a7 S) — R(S) + v Z T(87 a, S/) ma?X Qi(a’,7 S/)
Qi+1(a,s) «— Qi(a,s) + « (R(s) + v mﬂEfiX Q:(d, s —Q;(a, s))

Qit1(a,s) — (1 —a)Q;(a,s) +a (R(-‘i) 7 max Q;(d, s"))

Example

=« [DEMOS]

Exploration / Exploitation

= Several schemes for forcing exploration
= Simplest: random actions
= Every time step, flip a coin
= With probability &, act randomly
= With probability 1-¢, act according to current policy

= Problems with random actions?

S E S E

= Will take an non-optimal long route to reduce risk which stems from
exploration actions!

= Solution: lower € over time

Exploration Functions

= When to explore
= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not (yet)
established

= Exploration function

= Takes a value estimate and a count, and returns an optimistic
utility, e.g9. f(u,n) =u+k/n

Qi+1(a,s) — (1 —a)Q;i(a,s) + a (H(s) + 4 n“:::?x Q;(d, ,s'f))

Qi+1(a,s) — (1 —a)Qi(a,s) + (H(s} + 7 mugxf((),-(u’. s, N(d, ,,.’)))

Function Approximation

Problem: too slow to learn each state’s utility one by one

Solution: what we learn about one state should
generalize to similar states
= Very much like supervised learning

= If states are treated entirely independently, we can only learn on
very small state spaces

Discretization

Can put states into buckets of various
sizes

= E.g. can have all angles between 0 and 5
degrees share the same Q estimate

= Buckets too fine = takes a long time to
learn

= Buckets too coarse = learn suboptimal,
often jerky control

Real systems that use discretization
usually require clever bucketing schemes

= Adaptive sizes
= Tile coding

[DEMOS]

Linear Value Functions

= Another option: values are linear 3 | osrz | oses | ootz
functions of features of states (or
action-state pairs) 2 | o762 . 0se0 | [T
[79(5) — ngfk(s) 1 0705 | 0.6ss | o611 | 0388
k
1 2 3 4

= Good if you can describe states well

using a few features (e.g. for game 3 | 0.80|0.85 (0.90 [0.95
playing board evaluations)
2 | 0.70 . 0.80 |0.85
= Now we only have to learn a few
weights rather than a value for ' [0600.65 [0.70 (0.75
each state 1 2 s 4

Up(s) = 0.3+ 0.052+ 0.1y

TD Updates for Linear Values

» Can use TD learning with linear values
= (Actually it’s just like the perceptron!)
» Old Q-learning update:

Q(a,s) «— Q(a,s) + « (R(s) + v rTLEjX Q(d,s") — Q(a, s))

= Simply update weights of features in Qy(a,s)

0 — 0. + « (R(s) + ~ n’lﬁix Qp(d',s") — Qy(a, s)) fr(a,s)

