
1

CS 188: Artificial Intelligence
Spring 2006

Lecture 22: Reinforcement Learning II
4/13/2006

Dan Klein – UC Berkeley

Today

Reminder: P3 lab Friday, 2- 4pm, 275 Soda

Reinforcement learning
Temporal-difference learning
Q-learning
Function approximation

Recap: Passive Learning

Learning about an unknown MDP

Simplified task
You don’t know the transitions T(s,a,s’)
You don’t know the rewards R(s)
You DO know the policy π(s)
Goal: learn the state values (and maybe the model)

Last time: try to learn T, R and then solve as a 
known MDP

Model-Free Learning
Big idea: why bother learning T?

Update each time we experience a transition
Frequent outcomes will contribute more updates (over time)

Temporal difference learning (TD)
Policy still fixed!
Move values toward value of whatever successor occurs

Example: Passive TD

(1,1) -1 up

(1,2) -1 up

(1,2) -1 up

(1,3) -1 right

(2,3) -1 right

(3,3) -1 right

(3,2) -1 up

(3,3) -1 right

(4,3) +100

(1,1) -1 up

(1,2) -1 up

(1,3) -1 right

(2,3) -1 right

(3,3) -1 right

(3,2) -1 up

(4,2) -100

Take γ = 1, α = 0.1

(Greedy) Active Learning
In general, want to learn the optimal policy

Idea:
Learn an initial model of the environment:

Solve for the optimal policy for this model (value or 
policy iteration)

Refine model through experience and repeat



2

Example: Greedy Active Learning

Imagine we find the lower 
path to the good exit first
Some states will never be 
visited following this policy 
from (1,1)
We’ll keep re-using this 
policy because following it 
never collects the regions 
of the model we need to 
learn the optimal policy 

? ?

What Went Wrong?
Problem with following optimal 
policy for current model:

Never learn about better regions 
of the space

Fundamental tradeoff: 
exploration vs. exploitation

Exploration: must take actions 
with suboptimal estimates to 
discover new rewards and 
increase eventual utility
Exploitation: once the true 
optimal policy is learned, 
exploration reduces utility
Systems must explore in the 
beginning and exploit in the limit

? ?

Q-Functions

Alternate way to learn:
Utilities for state-action pairs rather than states
AKA Q-functions

Learning Q-Functions: MDPs

Just like Bellman updates for state values:
For fixed policy π

For optimal policy

Main advantage of Q- functions over values U is 
that you don’t need a model for learning or 
action selection!

Q-Learning

Model free, TD learning with Q-functions:

Example

[DEMOS]



3

Exploration / Exploitation
Several schemes for forcing exploration

Simplest: random actions
Every time step, flip a coin
With probability ε, act randomly
With probability 1-ε, act according to current policy

Problems with random actions?

Will take an non-optimal long route to reduce risk which stems from 
exploration actions!
Solution: lower ε over time

ES ES

Exploration Functions

When to explore
Random actions: explore a fixed amount
Better idea: explore areas whose badness is not (yet) 
established

Exploration function
Takes a value estimate and a count, and returns an optimistic 
utility, e.g.

Function Approximation

Problem: too slow to learn each state’s utility one by one

Solution: what we learn about one state should 
generalize to similar states

Very much like supervised learning
If states are treated entirely independently, we can only learn on 
very small state spaces

Discretization
Can put states into buckets of various 
sizes

E.g. can have all angles between 0 and 5 
degrees share the same Q estimate
Buckets too fine ⇒ takes a long time to 
learn
Buckets too coarse ⇒ learn suboptimal, 
often jerky control

Real systems that use discretization
usually require clever bucketing schemes

Adaptive sizes
Tile coding

[DEMOS]

Linear Value Functions
Another option: values are linear 
functions of features of states (or 
action-state pairs)

Good if you can describe states well 
using a few features (e.g. for game 
playing board evaluations)

Now we only have to learn a few 
weights rather than a value for 
each state

0.60

0.70

0.80 0.85

0.65 0.70

0.80

0.90

0.75

0.85

0.95

TD Updates for Linear Values

Can use TD learning with linear values
(Actually it’s just like the perceptron!)
Old Q-learning update:

Simply update weights of features in Qθ(a,s)


