CS 188: Artificial Intelligence Spring 2006

Lecture 22: Reinforcement Learning II 4/13/2006

Dan Klein - UC Berkeley

Today

- Reminder: P3 lab Friday, 2 4m, 275 Soda
- Reinforcement learning
 - Temporal-difference learning
 - Q-learning
 - Function approximation

Recap: Passive Learning

- Learning about an unknown MDP
- Simplified task
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s)
 - You DO know the policy $\pi(s)$
 - Goal: learn the state values (and maybe the model)
- Last time: try to learn T, R and then solve as a known MDP

Model-Free Learning

- Big idea: why bother learning T?
- Update each time we experience a transition
- · Frequent outcomes will contribute more updates (over time)
- Temporal difference learning (TD)
 - Policy still fixed!

Move values toward value of whatever successor occurs

$$\begin{split} U^{\pi}(s) &= R(s) + \gamma \sum_{s'} U^{\pi}(s') T(s, \pi(s), s') \\ U^{\pi}(s) &\leftarrow U^{\pi}(s) + \alpha \left(R(s) + \gamma U^{\pi}(s') - U^{\pi}(s) \right) \\ U^{\pi}(s) &\leftarrow (1 - \alpha) U^{\pi}(s) + \alpha \left(R(s) + \gamma U^{\pi}(s') \right) \end{split}$$

Example: Passive TD $U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha \left(R(s) + \gamma U^{\pi}(s') - U^{\pi}(s) \right) \cdot \boxed{-}$ t 🖭 (1,1) -1 up (1,1) -1 up (1,2) -1 up (1,2) -1 up (1,2) -1 up (1,3) -1 right (1,3) -1 right (2,3) -1 right (2,3) -1 right (3,3) -1 right (3,3) -1 right (3,2) -1 up (4,2) -100 (3,2) -1 up (3,3) -1 right (4,3) +100 Take $\gamma = 1$, $\alpha = 0.1$

(Greedy) Active Learning

- In general, want to learn the optimal policy
- Idea:
 - Learn an initial model of the environment:
 - Solve for the optimal policy for this model (value or policy iteration)
 - Refine model through experience and repeat

Example: Greedy Active Learning

- Imagine we find the lower path to the good exit first
- Some states will never be visited following this policy from (1,1)
- We'll keep re-using this policy because following it never collects the regions of the model we need to learn the optimal policy

What Went Wrong?

- Problem with following optimal
 - policy for current model:

 Never learn about better regions of the space
- Fundamental tradeoff: exploration vs. exploitation
 - Exploration: must take actions with suboptimal estimates to discover new rewards and increase eventual utility
 - Exploitation: once the true optimal policy is learned, exploration reduces utility Systems must explore in the beginning and exploit in the limit

Q-Functions

- Alternate way to learn:
 - Utilities for state-action pairs rather than states
 - AKA Q-functions

$$\begin{aligned} Q(a,s) &= R(s) + \gamma \sum_{s'} T(s,a,s') \max_{a'} Q(a',s') \\ U(s) &= \max_{a} Q(a,s) \\ U(3,2) &= 0.660 \quad \pi(3,2) = \text{up} \\ Q(\text{up},\langle 3,2\rangle) &= 0.660 \\ Q(\text{right},\langle 3,2\rangle) &= -0.535 \end{aligned}$$

Learning Q-Functions: MDPs

- Just like Bellman updates for state values:
 - For fixed policy π

$$Q_{i+1}^{\pi}(a,s) \leftarrow R(s) + \gamma \sum_{i} T(s,a,s') Q_{i}^{\pi}(\pi(s'),s')$$

For optimal policy

$$Q_{i+1}(a,s) \leftarrow R(s) + \gamma \sum_{l} T(s,a,s') \max_{a'} Q_i(a',s')$$

Main advantage of Q functions over values U is that you don't need a model for learning or action selection!

Q-Learning

Model free, TD learning with Q-functions:

$$\begin{aligned} Q_{i+1}(a,s) &\leftarrow R(s) + \gamma \sum_{s'} T(s,a,s') \max_{a'} Q_i(a',s') \\ Q_{i+1}(a,s) &\leftarrow Q_i(a,s) + \alpha \left(R(s) + \gamma \max_{a'} Q_i(a',s') - Q_i(a,s) \right) \\ Q_{i+1}(a,s) &\leftarrow (1-\alpha)Q_i(a,s) + \alpha \left(R(s) + \gamma \max_{a'} Q_i(a',s') \right) \end{aligned}$$

Example

[DEMOS]

Exploration / Exploitation

- Several schemes for forcing exploration
 - Simplest: random actions
 Every time step, flip a coin

 - With probability ε, act randomly
 With probability 1-ε, act according to current policy
 - Problems with random actions?

- Will take an non-optimal long route to reduce risk which stems from exploration actions!
- Solution: lower ε over time

Exploration Functions

- When to explore
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established
- Exploration function
 - Takes a value estimate and a count, and returns an optimistic utility, e.g. f(u,n) = u + k/n

$$\begin{split} Q_{i+1}(a,s) \leftarrow (1-\alpha)Q_i(a,s) + \alpha \left(R(s) + \gamma \max_{a'} Q_i(a',s')\right) \\ Q_{i+1}(a,s) \leftarrow (1-\alpha)Q_i(a,s) + \alpha \left(R(s) + \gamma \max_{a'} f(Q_i(a',s'),N(a',s'))\right) \end{split}$$

Function Approximation

- Problem: too slow to learn each state's utility one by one
- Solution: what we learn about one state should generalize to similar states
 - Very much like supervised learning
 - If states are treated entirely independently, we can only learn on very small state spaces

Discretization

- Can put states into buckets of various sizes
- E.g. can have all angles between 0 and 5 degrees share the same Q estimate
 Buckets too fine ⇒ takes a long time to

 - Buckets too coarse ⇒ learn suboptimal, often jerky control
- Real systems that use discretization usually require clever bucketing schemes

 - Tile coding
- [DEMOS]

Linear Value Functions

Another option: values are linear functions of features of states (or action-state pairs)

$$\hat{U}_{\theta}(s) = \sum_{k} \theta_{k} f_{k}(s)$$

- Good if you can describe states well using a few features (e.g. for game playing board evaluations)
- Now we only have to learn a few weights rather than a value for each state

3	0.812	0.868	0.912	m
2	0.762		0.660	-11
1	0.705	0.655	0.611	0.388
	一			$\overline{}$

3	0.80	0.85	0.90	0.95
2	0.70		0.80	0.85
1	0.60	0.65	0.70	0.75

 $\hat{U}_{\theta}(s) = 0.3 + 0.05x + 0.1y$

TD Updates for Linear Values

- Can use TD learning with linear values
 - (Actually it's just like the perceptron!)
 - Old Q-learning update:

$$Q(a,s) \leftarrow Q(a,s) + \alpha \left(R(s) + \gamma \max_{a'} Q(a',s') - Q(a,s) \right)$$

Simply update weights of features in Q₀(a,s)

$$\theta_k \leftarrow \theta_k + \alpha \left(R(s) + \gamma \max_{a'} Q_{\theta}(a', s') - Q_{\theta}(a, s) \right) f_k(a, s)$$