CS 188: Artificial Intelligence Spring 2006

Lecture 23: Games
4/18/2006

Dan Klein - UC Berkeley

Game Playing in Practice

- Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of $443,748,401,247$ positions. Exact solution imminent.
- Chess: Deep Blue defeated human world champion Gary Kasparov in a six-game match in 1997. Deep Blue examined 200 million positions per second, used very sophisticated evaluation and undisclosed methods for extending some lines of search up to 40 ply.
- Othello: human champions refuse to compete against computers, who are too good.
- Go: human champions refuse to compete against computers, who are too bad. In go, b > 300, so most programs use pattern knowledge bases to suggest plausible moves.

Game Playing

- Axes:
- Deterministic or not
- Number of players
- Perfect information or not
- Want algorithms for calculating a strategy (policy) which recommends a move in each state

Deterministic Single Player?

- Deterministic, single player, perfect information:
- Know the rules
- Know what moves will do
- Have some utility function over outcomes
- E.g. Freecell, 8-Puzzle, Rubik's cube
- ... it's (basically) just search!
- Slight reinterpretation:

- Calculate best utility from each node
- Each node is a max over children
- Note that goal values are on the goal, not path sums as before

Stochastic Single Player

- What if we don't know what the result of an action will be?
- E.g. solitaire, minesweeper, trying to drive home
- ... just an MDP!
- Can also do expectimax search
- Chance nodes, like actions except the environment controls the action chosen
- Calculate utility for each node
- Max nodes as in search

- Chance nodes take expectations of children

Deterministic Two Player (Turns)

- E.g. tic-tac-toe
- Minimax search
- Basically, a state-space search tree
- Each layer, or ply, alternates players
- Choose move to position with highest minimax value = best achievable utility against best play
- Zero-sum games
- One player maximizes result
- The other minimizes result

Minimax Example

Minimax Search

function MAX-VALUE(state) returns a utility value if Terminal-Test(state) then return Utility(state) $v \leftarrow-\infty$
for a, s in Successors (state) do $v \leftarrow \operatorname{Max}(v, \operatorname{Min}-\operatorname{Value}(s))$ return v
function Min-VALUE(state) returns a utility value if Terminal-TEST(state) then return Utility(state)
$v \leftarrow \infty$
for a, s in $\operatorname{Successors}($ state $)$ do $v \leftarrow \operatorname{Min}(v, \operatorname{Max}-\operatorname{Value}(s))$ return v

Minimax Properties

- Optimal against a perfect player. Otherwise?
- Time complexity?
- $O\left(b^{m}\right)$
- Space complexity?
- O(bm)

- For chess, $b \approx 35, \mathrm{~m} \approx 100$
- Exact solution is completely infeasible
- But, do we need to explore the whole tree?

Multi-Player Games

- Similar to minimax:
- Utilities are now tuples
- Each player maximizes their own entry at each node
- Propagate (or back up) nodes from children

Games with Chance

- E.g. backgammon
- Expectiminimax search!
- Environment is an extra player than moves after each agent
- Chance nodes take expectations, otherwise like minimax

if state is a Max node then
return the highest ExpectiMinimax-ValuE of Successors(state)
if state is a Min node then
return the lowest ExpectiMinimax-Value of Successors(state)
if state is a chance node then
return average of ExpectiMinimax-Value of Successors(state)

Games with Chance

- Dice rolls increase b: 21 possible rolls with 2 dice
- Backgammon ≈ 20 legal moves
- Depth $4=20 \times(21 \times 20)^{3} 1.2 \times 10^{9}$
- As depth increases, probability of reaching a given node shrinks
- So value of lookahead is diminished
- So limiting depth is less damaging
- But pruning is less possible...

- TDGammon uses depth-2 search + very good eval function + reinforcement learning: worldchampion level play

Games with Hidden Information

- Imperfect information:
- E.g., card games, where opponent's initial cards are unknown
- Typically we can calculate a probability for each possible deal
- Seems just like having one big dice roll at the beginning of the game
- Idea: compute the minimax value of each action in each deal, then choose the action with highest expected value over all deals
- Special case: if an action is optimal for all deals, it's optimal.
- GIB, current best bridge program, approximates this idea by
- 1) generating 100 deals consistent with bidding information
- 2) picking the action that wins most tricks on average
- Drawback to this approach?
- It's broken!
- (Though useful in practice)

Averaging over Deals is Broken

- Road A leads to a small heap of gold pieces
- Road B leads to a fork:
- take the left fork and you'll find a mound of jewels;
- take the right fork and you'll be run over by a bus.
- Road A leads to a small heap of gold pieces
- Road B leads to a fork:
- take the left fork and you'll be run over by a bus;
- take the right fork and you'll find a mound of jewels.
- Road A leads to a small heap of gold pieces
- Road B leads to a fork:
- guess correctly and you'll nd a mound of jewels;
- guess incorrectly and you'll be run over by a bus.

Efficient Search

- Several options:
- Pruning: avoid regions of search tree which will never enter into (optimal) play
- Limited depth: don't search very far into the future, approximate utility with a value function (familiar?)

Next Class

- More game playing
- Pruning
- Limited depth search
- Connection to reinforcement learning!

