Game Playing in Practice

- Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions. Exact solution imminent.

- Chess: Deep Blue defeated human world champion Gary Kasparov in a six-game match in 1997. Deep Blue examined 200 million positions per second, used very sophisticated evaluation and undisclosed methods for extending some lines of search up to 40 ply.

- Othello: human champions refuse to compete against computers, who are too good.

- Go: human champions refuse to compete against computers, who are too bad. In go, b > 300, so most programs use pattern knowledge bases to suggest plausible moves.
Game Playing

- Axes:
 - Deterministic or not
 - Number of players
 - Perfect information or not

- Want algorithms for calculating a strategy (policy) which recommends a move in each state

Deterministic Single Player?

- Deterministic, single player, perfect information:
 - Know the rules
 - Know what moves will do
 - Have some utility function over outcomes
 - E.g. Freecell, 8-Puzzle, Rubik’s cube

- … it’s (basically) just search!

- Slight reinterpretation:
 - Calculate best utility from each node
 - Each node is a max over children
 - Note that goal values are on the goal, not path sums as before
Stochastic Single Player

- What if we don’t know what the result of an action will be?
 - E.g. solitaire, minesweeper, trying to drive home
- … just an MDP!
- Can also do expectimax search
 - Chance nodes, like actions except the environment controls the action chosen
 - Calculate utility for each node
 - Max nodes as in search
 - Chance nodes take expectations of children

Deterministic Two Player (Turns)

- E.g. tic-tac-toe
- Minimax search
 - Basically, a state-space search tree
 - Each layer, or ply, alternates players
 - Choose move to position with highest minimax value = best achievable utility against best play
- Zero-sum games
 - One player maximizes result
 - The other minimizes result
Minimax Example
Minimax Search

function `MAX-VALUE(state)` returns a utility value

- if `TERMINAL-TEST(state)` then return `UTILITY(state)`
- \(v \leftarrow -\infty \)
- for \(a, s \) in `SUCCESSORS(state)` do \(v \leftarrow \text{Max}(v, \text{MIN-VALUE}(s)) \)
- return \(v \)

function `MIN-VALUE(state)` returns a utility value

- if `TERMINAL-TEST(state)` then return `UTILITY(state)`
- \(v \leftarrow \infty \)
- for \(a, s \) in `SUCCESSORS(state)` do \(v \leftarrow \text{Min}(v, \text{MAX-VALUE}(s)) \)
- return \(v \)

Minimax Properties

- Optimal against a perfect player. Otherwise?

- Time complexity?
 - \(O(b^m) \)

- Space complexity?
 - \(O(bm) \)

- For chess, \(b \approx 35, m \approx 100 \)
 - Exact solution is completely infeasible
 - But, do we need to explore the whole tree?
Multi-Player Games

- Similar to minimax:
 - Utilities are now tuples
 - Each player maximizes their own entry at each node
 - Propagate (or back up) nodes from children

Games with Chance

- E.g. backgammon
- Expectiminimax search!
 - Environment is an extra player than moves after each agent
 - Chance nodes take expectations, otherwise like minimax

```java
if state is a MAX node then
    return the highest \texttt{Expectiminimax-Value} of \texttt{Successors}(state)
if state is a MIN node then
    return the lowest \texttt{Expectiminimax-Value} of \texttt{Successors}(state)
if state is a chance node then
    return average of \texttt{Expectiminimax-Value} of \texttt{Successors}(state)
```
Games with Chance

- Dice rolls increase b: 21 possible rolls with 2 dice
 - Backgammon ≈ 20 legal moves
 - Depth 4 = 20 × (21 × 20)^3 1.2 × 10^9

- As depth increases, probability of reaching a given node shrinks
 - So value of lookahead is diminished
 - So limiting depth is less damaging
 - But pruning is less possible…

- TDGammon uses depth-2 search + very good eval function + reinforcement learning: world-champion level play

Games with Hidden Information

- Imperfect information:
 - E.g., card games, where opponent's initial cards are unknown
 - Typically we can calculate a probability for each possible deal
 - Seems just like having one big dice roll at the beginning of the game

- Idea: compute the minimax value of each action in each deal, then choose the action with highest expected value over all deals
 - Special case: if an action is optimal for all deals, it's optimal.
 - GIB, current best bridge program, approximates this idea by
 - 1) generating 100 deals consistent with bidding information
 - 2) picking the action that wins most tricks on average

- Drawback to this approach?
 - It's broken!
 - (Though useful in practice)
Averaging over Deals is Broken

- Road A leads to a small heap of gold pieces
- Road B leads to a fork:
 - take the left fork and you'll find a mound of jewels;
 - take the right fork and you'll be run over by a bus.

- Road A leads to a small heap of gold pieces
- Road B leads to a fork:
 - take the left fork and you'll be run over by a bus;
 - take the right fork and you'll find a mound of jewels.

- Road A leads to a small heap of gold pieces
- Road B leads to a fork:
 - guess correctly and you'll find a mound of jewels;
 - guess incorrectly and you'll be run over by a bus.

Efficient Search

- Several options:
 - Pruning: avoid regions of search tree which will never enter into (optimal) play
 - Limited depth: don’t search very far into the future, approximate utility with a value function (familiar?)
Next Class

- More game playing
 - Pruning
 - Limited depth search
 - Connection to reinforcement learning!