
1

CS 188: Artificial Intelligence
Spring 2006

Lecture 23: Games
4/18/2006

Dan Klein – UC Berkeley

Game Playing in Practice
Checkers: Chinook ended 40-year-reign of human world champion
Marion Tinsley in 1994. Used an endgame database defining perfect
play for all positions involving 8 or fewer pieces on the board, a total
of 443,748,401,247 positions. Exact solution imminent.

Chess: Deep Blue defeated human world champion Gary Kasparov
in a six-game match in 1997. Deep Blue examined 200 million
positions per second, used very sophisticated evaluation and
undisclosed methods for extending some lines of search up to 40
ply.

Othello: human champions refuse to compete against computers,
who are too good.

Go: human champions refuse to compete against computers, who
are too bad. In go, b > 300, so most programs use pattern
knowledge bases to suggest plausible moves.

2

Game Playing

Axes:
Deterministic or not
Number of players
Perfect information or not

Want algorithms for calculating a strategy
(policy) which recommends a move in
each state

Deterministic Single Player?
Deterministic, single player,
perfect information:

Know the rules
Know what moves will do
Have some utility function over
outcomes
E.g. Freecell, 8-Puzzle, Rubik’s
cube

… it’s (basically) just search!

Slight reinterpretation:
Calculate best utility from each
node
Each node is a max over children
Note that goal values are on the
goal, not path sums as before

8 2 5 6

3

Stochastic Single Player
What if we don’t know what the
result of an action will be?

E.g. solitaire, minesweeper,
trying to drive home

… just an MDP!

Can also do expectimax search
Chance nodes, like actions
except the environment
controls the action chosen
Calculate utility for each node
Max nodes as in search
Chance nodes take
expectations of children

8 2 5 6

Deterministic Two Player (Turns)

E.g. tic-tac-toe

Minimax search
Basically, a state-space search tree
Each layer, or ply, alternates players
Choose move to position with highest
minimax value = best achievable
utility against best play

Zero-sum games
One player maximizes result
The other minimizes result 8 2 5 6

4

Minimax Example

5

Minimax Search

Minimax Properties
Optimal against a perfect player. Otherwise?

Time complexity?
O(bm)

Space complexity?
O(bm)

For chess, b ≈ 35, m ≈ 100
Exact solution is completely infeasible
But, do we need to explore the whole tree?

6

Multi-Player Games

Similar to
minimax:

Utilities are
now tuples
Each player
maximizes
their own entry
at each node
Propagate (or
back up) nodes
from children

1,2,6 4,3,2 6,1,2 7,4,1 5,1,1 1,5,2 7,7,1 5,4,5

Games with Chance

E.g. backgammon
Expectiminimax search!

Environment is an extra
player than moves after
each agent
Chance nodes take
expectations, otherwise like
minimax

7

Games with Chance
Dice rolls increase b: 21 possible rolls
with 2 dice

Backgammon ≈ 20 legal moves
Depth 4 = 20 x (21 x 20)3 1.2 x 109

As depth increases, probability of
reaching a given node shrinks

So value of lookahead is diminished
So limiting depth is less damaging
But pruning is less possible…

TDGammon uses depth-2 search +
very good eval function +
reinforcement learning: world-
champion level play

Games with Hidden Information
Imperfect information:

E.g., card games, where opponent's initial cards are unknown
Typically we can calculate a probability for each possible deal
Seems just like having one big dice roll at the beginning of the game

Idea: compute the minimax value of each action in each deal, then
choose the action with highest expected value over all deals

Special case: if an action is optimal for all deals, it's optimal.
GIB, current best bridge program, approximates this idea by

1) generating 100 deals consistent with bidding information
2) picking the action that wins most tricks on average

Drawback to this approach?
It’s broken!
(Though useful in practice)

8

Averaging over Deals is Broken
Road A leads to a small heap of gold pieces
Road B leads to a fork:

take the left fork and you'll find a mound of jewels;
take the right fork and you'll be run over by a bus.

Road A leads to a small heap of gold pieces
Road B leads to a fork:

take the left fork and you'll be run over by a bus;
take the right fork and you'll find a mound of jewels.

Road A leads to a small heap of gold pieces
Road B leads to a fork:

guess correctly and you'll nd a mound of jewels;
guess incorrectly and you'll be run over by a bus.

Efficient Search

Several options:

Pruning: avoid regions of search tree which
will never enter into (optimal) play

Limited depth: don’t search very far into the
future, approximate utility with a value
function (familiar?)

9

Next Class

More game playing
Pruning
Limited depth search
Connection to reinforcement learning!

