CS 188: Atrtificial Intelligence
Spring 2006

Lecture 23: Games
4/18/2006

Dan Klein — UC Berkeley

Game Playing in Practice

Checkers: Chinook ended 40-year-reign of human world champion
Marion Tinsley in 1994. Used an endgame database defining perfect
play for all positions involving 8 or fewer pieces on the board, a total
of 443,748,401,247 positions. Exact solution imminent.

Chess: Deep Blue defeated human world champion Gary Kasparov
in a six-game match in 1997. Deep Blue examined 200 million
positions per second, used very sophisticated evaluation and
undisclosed methods for extending some lines of search up to 40

ply.

Othello: human champions refuse to compete against computers,
who are too good.

Go: human champions refuse to compete against computers, who
are too bad. In go, b > 300, so most programs use pattern
knowledge bases to suggest plausible moves.

Game Playing

= Axes:
= Deterministic or not
» Number of players
= Perfect information or not

= Want algorithms for calculating a strategy
(policy) which recommends a move in
each state

Deterministic Single Player?

= Deterministic, single player,
perfect information:
= Know the rules
= Know what moves will do

= Have some utility function over
outcomes

= E.g. Freecell, 8-Puzzle, Rubik’'s
cube

= ... it's (basically) just search!

= Slight reinterpretation:

= Calculate best utility from each
node

= Each node is a max over children

= Note that goal values are on the
goal, not path sums as before

Stochastic Single Player

= What if we don’t know what the
result of an action will be?

= E.g. solitaire, minesweeper,
trying to drive home

= ... justan MDP!

= Can also do expectimax search

= Chance nodes, like actions
except the environment
controls the action chosen

= Calculate utility for each node
= Max nodes as in search

= Chance nodes take
expectations of children

Deterministic Two Player (Turns)

= E.g. tic-tac-toe

= Minimax search
= Basically, a state-space search tree
= Each layer, or ply, alternates players

= Choose move to position with highest
minimax value = best achievable
utility against best play

= Zero-sum games
= One player maximizes result
= The other minimizes result

MAX (X)

+1

| oo

X
o

Minimax Example

|

TERMINAL [[0[X
o

—
X
X
[x]o]x] [x[o[x] [x|o[x]
c‘o
XX
0

MIN (0)
MAX (X)
MIN (0)

Utility

Minimax Search

function MAX-VaLug(state) returns a utility value
if TERMINAL-TEST(stale) then return UTiLiTy(stale)
V4= —00
for a. s in Successors(state) do v— Max(v, MIN-VALUE(s))
return v

function MinN-VaLUE(state) returns a ufility value
if TERMINAL-TEST(state) then return UTiLITY (state)
U= 0C
for a, sin SUCCESSORS(state) do v+ NMIN(v, MAX-VALUE(s))
return v

Minimax Properties

Optimal against a perfect player. Otherwise?

Time complexity?
= O(b™)

Space complexity?
= O(bm)

For chess, b ~ 35, m ~ 100
= Exact solution is completely infeasible
= But, do we need to explore the whole tree?

Multi-Player Games

Similar to
minimax:

= Utilities are
now tuples

= Each player
maximizes
their own entry
at each node

= Propagate (or

back up) nodes [126][432] [612][741] [521][152][771][545]
from children

Games with Chance

= E.g. backgammon MAX
= Expectiminimax search!

= Environment is an extra

CHANCE
player than moves after
each agent
= Chance nodes take e
expectations, otherwise like
minimax

if stateis a MAX node then

return the highest EXPECTINIINIMAX-VALUE of SUCCESSORS(state)
if stateis a MIN node then

return the lowest EXPECTIMINIMAX-VALUE of SUCCESSORS(state)
if state is a chance node then

return average of EXPECTIMINIMAX-VALUE of SUCCESSORS(stafc)

Games with Chance

= Dice rolls increase b: 21 possible rolls

with 2 dice
= Backgammon ~ 20 legal moves

» Depth 4 =20 x (21 x 20)® 1.2 x 10° g L

= As depth increases, probability of
reaching a given node shrinks
= So value of lookahead is diminished
= So limiting depth is less damaging
= But pruning is less possible...

AN
25 242322212019 1817 16 1514 13

= TDGammon uses depth-2 search +
very good eval function +
reinforcement learning: world-
champion level play

Games with Hidden Information

= Imperfect information:
= E.g., card games, where opponent's initial cards are unknown
= Typically we can calculate a probability for each possible deal
= Seems just like having one big dice roll at the beginning of the game

Idea: compute the minimax value of each action in each deal, then
choose the action with highest expected value over all deals

= Special case: if an action is optimal for all deals, it's optimal.

= GIB, current best bridge program, approximates this idea by
= 1) generating 100 deals consistent with bidding information
= 2) picking the action that wins most tricks on average

= Drawback to this approach?
= |t's broken!
= (Though useful in practice)

Averaging over Deals is Broken

= Road A leads to a small heap of gold pieces

= Road B leads to a fork:
= take the left fork and you'll find a mound of jewels;
= take the right fork and you'll be run over by a bus.

= Road A leads to a small heap of gold pieces
= Road B leads to a fork:
= take the left fork and you'll be run over by a bus;
= take the right fork and you'll find a mound of jewels.

= Road A leads to a small heap of gold pieces

= Road B leads to a fork:
= guess correctly and you'll nd a mound of jewels;
= guess incorrectly and you'll be run over by a bus.

Efficient Search

= Several options:

» Pruning: avoid regions of search tree which
will never enter into (optimal) play

» Limited depth: don’t search very far into the
future, approximate utility with a value
function (familiar?)

Next Class

= More game playing
= Pruning
» Limited depth search
= Connection to reinforcement learning!

