CS 188: Artificial Intelligence
Spring 2006

Lecture 23: Games
4/18/2006

Dan Klein – UC Berkeley

Game Playing in Practice

- Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions. Exact solution imminent.
- Chess: Deep Blue defeated human world champion Gary Kasparov in a six-game match in 1997. Deep Blue examined 200 million positions per second, used very sophisticated evaluation and undisclosed methods for extending some lines of search up to 40 ply.
- Othello: human champions refuse to compete against computers, who are too good.
- Go: human champions refuse to compete against computers, who are too bad. In go, b > 300, so most programs use pattern knowledge bases to suggest plausible moves.

Game Playing

- Axes:
 - Deterministic or not
 - Number of players
 - Perfect information or not

- Want algorithms for calculating a strategy (policy) which recommends a move in each state

Deterministic Single Player?

- Deterministic, single player, perfect information:
 - Know the rules
 - Know what moves will do
 - Have some utility function over outcomes
 - E.g. Freecell, 8-Puzzle, Rubik’s cube

- ... it’s (basically) just search!

- Slight reinterpretation:
 - Calculate best utility from each node
 - Each node is a max over children
 - Note that goal values are on the goal, not path sums as before

Stochastic Single Player

- What if we don’t know what the result of an action will be?
 - E.g. solitaire, minesweeper, trying to drive home

- ... just an MDP!

- Can also do expectimax search
 - Chance nodes, like actions except the environment controls the action chosen
 - Calculate utility for each node
 - Chance nodes as in search
 - Chance nodes take expectations of children

Deterministic Two Player (Turns)

- E.g. tic-tac-toe

- Minimax search
 - Basically, a state-space search tree
 - Each layer, or ply, alternates players
 - Choose move to position with highest minimax value = best achievable utility against best play

- Zero-sum games
 - One player maximizes result
 - The other minimizes result
Minimax Search

function \text{MAX-VALUE}(state) returns a utility value
if Terminal-Test(state) then return \text{Utility}(state)
\text{\textbf{value} = -\text{\infty}}
for \text{\textbf{a}} in \text{Successors}(state) do \text{\textbf{value} = MAX(\text{\textbf{value}}, \text{\text{MIN-VALUE}}(\text{\textbf{a}}))}
return \text{\textbf{value}}

function \text{MIN-VALUE}(state) returns a utility value
if Terminal-Test(state) then return \text{Utility}(state)
\text{\textbf{value} = +\text{\infty}}
for \text{\textbf{a}} in \text{Successors}(state) do \text{\textbf{value} = MIN(\text{\textbf{value}}, \text{\text{MAX-VALUE}}(\text{\textbf{a}}))}
return \text{\textbf{value}}

Minimax Properties

- Optimal against a perfect player. Otherwise?
- Time complexity?
 \text{O}(b^m)
- Space complexity?
 \text{O}(b^m)
- For chess, \text{b} ≈ 35, \text{m} ≈ 100
 - Exact solution is completely infeasible
 - But, do we need to explore the whole tree?

Multi-Player Games

- Similar to minimax:
 - Utilities are now tuples
 - Each player maximizes their own entry at each node
 - Propagate (or back up) nodes from children

Games with Chance

- E.g. backgammon
- Expectiminimax search!
 - Environment is an extra player than moves after each agent
 - Chance nodes take expectations, otherwise like minimax

\begin{align*}
\text{MAX} & \quad \text{CHANCE} \\
\text{MIN} & \quad 0.5 & 0.5 & 0.5 & 0.5 \\
\end{align*}

\begin{align*}
\text{if state is a MAX node then} & \quad \text{return the highest \text{\text{EXPECT-MAX}} of \text{Successors}(state)} \\
\text{if state is a MIN node then} & \quad \text{return the lowest \text{\text{EXPECT-MIN}} of \text{Successors}(state)} \\
\text{if state is a chance node then} & \quad \text{return average of \text{\text{EXPECT-MAX}} of \text{Successors}(state)} \
\end{align*}
Games with Chance

- Dice rolls increase b: 21 possible rolls with 2 dice
 - Backgammon = 20 legal moves
 - Depth 4 = 21 x (21 x 20)^4 1.2 x 10^9

- As depth increases, probability of reaching a given node shrinks
 - So value of lookahead is diminished
 - But pruning is less possible...

- TDGammon uses depth-2 search + very good eval function + reinforcement learning: world-champion level play

Games with Hidden Information

- Imperfect information:
 - E.g., card games, where opponent's initial cards are unknown
 - Typically we can calculate a probability for each possible deal
 - Seems just like having one big dice roll at the beginning of the game

- Idea: compute the minimax value of each action in each deal, then choose the action with highest expected value over all deals
 - Special case: if an action is optimal for all deals, it's optimal.
 - GIB, current best bridge program, approximates this idea by
 - 1) generating 100 deals consistent with bidding information
 - 2) picking the action that wins most tricks on average

- Drawback to this approach?
 - It's broken!
 - (Though useful in practice)

Averaging over Deals is Broken

- Road A leads to a small heap of gold pieces
- Road B leads to a fork:
 - take the left fork and you'll find a mound of jewels;
 - take the right fork and you'll be run over by a bus.

- Road A leads to a small heap of gold pieces
- Road B leads to a fork:
 - take the left fork and you'll be run over by a bus;
 - take the right fork and you'll find a mound of jewels.

- Road A leads to a small heap of gold pieces
- Road B leads to a fork:
 - guess correctly and you'll find a mound of jewels;
 - guess incorrectly and you'll be run over by a bus.

Efficient Search

- Several options:
 - Pruning: avoid regions of search tree which will never enter into (optimal) play
 - Limited depth: don't search very far into the future, approximate utility with a value function (familiar?)

Next Class

- More game playing
 - Pruning
 - Limited depth search
 - Connection to reinforcement learning!