# CS 188: Artificial Intelligence Spring 2006

Lecture 25: Games II 4/20/2006

Dan Klein - UC Berkeley

# Recap: Minimax Trees



### Minimax Search

```
function MAX-VALUE(state) returns a utility value if Terminal-Test(state) then return Utility(state) v \leftarrow -\infty for a, s in Successors(state) do v \leftarrow \text{Max}(v, \text{Min-Value}(s)) return v

function Min-Value(state) returns a utility value if Terminal-Test(state) then return Utility(state) v \leftarrow \infty for a, s in Successors(state) do v \leftarrow \text{Min}(v, \text{Max-Value}(s)) return v
```

# **DFS Minimax**



# $\alpha$ - $\beta$ Pruning Example

[Code in book]



# $\alpha$ - $\beta$ Pruning

- General configuration
  - α is the best value (to MAX) found so far off the current path
  - If V is worse than α, MAX will avoid it, so prune V's branch
  - Define β similarly for MIN



# $\alpha$ - $\beta$ Pruning Properties

- Pruning has no effect on final result
- Good move ordering improves effectiveness of pruning
- With "perfect ordering":
  - Time complexity drops to O(b<sup>m/2</sup>)
  - Doubles solvable depth
  - Full search of, e.g. chess, is still hopeless!
- A simple example of metareasoning, here reasoning about which computations are relevant

#### **Resource Limits**

- Cannot search to leaves
- Limited search
  - Instead, search a limited portion of the tree
  - Replace terminal utilities with an eval function for non-terminal positions
- Guarantee of optimal play is gone
- Example:
  - Suppose we have 100 seconds, can explore 10K nodes / sec
  - So can check 1M nodes per move
  - $\alpha$ - $\beta$  reaches about depth 8 decent chess program



### **Evaluation Functions**

Function which scores non-terminals



- Ideal function: returns the utility of the position
- In practice: typically weighted linear sum of features:

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

• e.g.  $f_1(s) = \text{(num white queens - num black queens), etc.}$ 

# **Function Approximation**

- Problem: inefficient to learn each state's utility (or eval function) one by one
- Solution: what we learn about one state (or position) should generalize to similar states
  - Very much like supervised learning
  - If states are treated entirely independently, we can only learn on very small state spaces



White to move Black winning

#### **Linear Value Functions**

 Another option: values are linear functions of features of states (or action-state pairs)

$$\widehat{U}_{\theta}(s) = \sum_{k} \theta_{k} f_{k}(s)$$

- Good if you can describe states well using a few features (e.g. for game playing board evaluations)
- Now we only have to learn a few weights rather than a value for each state



| 3 | 0.80 | 0.85 | 0.90 | 0.95 |
|---|------|------|------|------|
| 2 | 0.70 |      | 0.80 | 0.85 |
| 1 | 0.60 | 0.65 | 0.70 | 0.75 |
|   | 1    | 2    | 3    | 4    |

$$\hat{U}_{\theta}(s) = 0.3 + 0.05x + 0.1y$$

### Recap: Model-Free Learning

- Recall MDP value updates for a given estimate of U
  - If you know the model T, use Bellman update

$$U(s) \leftarrow R(s) + \gamma \max_{a} \sum_{s'} U(s')T(s, a, s')$$

- Temporal difference learning (TD)
  - Make (epsilon greedy) action choice (or follow a provided policy)

$$\pi(s) = \arg\max_{a} \sum_{s'} U(s') T(s, a, s')$$

Update using results of the action

$$U(s) \leftarrow (1 - \alpha)U(s) + \alpha \left(R(s) + \gamma U(s')\right)$$

#### **Example: Tabular Value Updates**

- Example: Blackjack
  - +1 for win, -1 for loss or bust, 0 for tie
  - Our hand shows 14, current policy says "hit"
  - Current U(s) is 0.5
  - We hit, get an 8, bust (end up in s' = "lose")
- Update
  - Old U(s) = 0.5
  - Observed R(s) = 0
  - Old U(s') = -1
  - New U(s) = U(s) +  $\alpha$  [  $\gamma$  (R(s) + U(s') U(s) ]
  - If  $\alpha = 0.1$ ,  $\gamma = 1.0$
  - New U(s) = 0.5 + 0.1 [ 0 + -1 0.5 ] = 0.5 + 0.1 [-1.5] = 0.35

### TD Updates: Linear Values

Assume a linear value function:

$$\hat{U}_{\theta}(s) = \sum_{k} \theta_{k} f_{k}(s)$$

Can almost do a TD update:

$$U(s) \leftarrow U(s) + \alpha ([R(s) + \gamma U(s')] - U(s))$$

- Problem: we can't "increment" U(s) explicitly
- Solution: update the weights of the features at that state

$$\theta_k \leftarrow \theta_k + \alpha ([R(s) + \gamma U(s')] - U(s)) f_k(s)$$

#### Learning Eval Parameters with TD

- Ideally, want eval(s) to be the utility of s
- Idea: use techniques from reinforcement learning
  - Samuel's 1959 checkers system
  - Tesauro's 1992 backgammon system (TD-Gammon)
- Basic approach: temporal difference updates
  - Begin in state s
  - Choose action using limited minimax search
  - See what opponent does
  - End up in state s'
  - Do a value update of U(s) using U(s')
  - Not guaranteed to converge against an adversary, but can work in practice

#### Q-Learning

- With TD updates on values
  - You don't need the model to update the utility estimates
  - You still do need it to figure out what action to take!
- Q-Learning with TD updates
  - No model needed to learn or to choose actions

$$Q_{i+1}(a,s) \leftarrow (1-\alpha)Q_i(a,s) + \alpha \left(R(s) + \gamma \max_{a'} Q_i(a',s')\right)$$

$$\pi(s) = \arg\max_{a} Q(a, s)$$

# TD Updates for Linear Qs

- Can use TD learning with linear Qs
  - (Actually it's just like the perceptron!)
  - Old Q-learning update:

$$Q(a,s) \leftarrow Q(a,s) + \alpha \left( R(s) + \gamma \max_{a'} Q(a',s') - Q(a,s) \right)$$

Simply update weights of features in Q<sub>θ</sub>(a,s)

$$\theta_k \leftarrow \theta_k + \alpha \left( R(s) + \gamma \max_{a'} Q_{\theta}(a', s') - Q_{\theta}(a, s) \right) f_k(a, s)$$

### Coming Up

- Real-world applications
  - Large-scale machine / reinforcement learning
  - NLP: language understanding and translation
  - Vision: object and face recognition