CS 188: Atrtificial Intelligence
Spring 2006

Lecture 25: Games Il
4/20/2006

Dan Klein — UC Berkeley

Recap: Minimax Trees

Minimax Search

function MAX-VaLug(state) returns a utility value
if TERMINAL-TEST(sfate) then return UTiLiTy(stale)
V= —0C
for a. s in Successors(state) do v— Max(v, MIN-VALUE(s))
return v

function MiIN-VALUE(state) returns a utility value
if TERMINAL-TEST(slate) then return UTiLITY (state)
U4+ 0OC
for a. s in Successors(state) do v NMin(v, MAX-VALUE(s))
return v

DFS Minimax

o- Pruning Example

= [Code in book]

a-fB Pruning

= General configuration

» o is the best value (to
MAX) found so far off
the current path

MAX

MIN
= If Vis worse than a,
MAX will avoid it, so
prune V'’s branch
MAX
= Define B similarly for MIN

MIN

a-B Pruning Properties

Pruning has no effect on final result
Good move ordering improves effectiveness of pruning

With “perfect ordering”:
= Time complexity drops to O(b™?)
= Doubles solvable depth
= Full search of, e.g. chess, is still hopeless!

A simple example of metareasoning, here reasoning
about which computations are relevant

Resource Limits

Cannot search to leaves

Limited search

= Instead, search a limited portion of the
tree

= Replace terminal utilities with an eval
function for non-terminal positions

Guarantee of optimal play is gone

Example:

= Suppose we have 100 seconds, can
explore 10K nodes / sec

= So can check 1M nodes per move

* o-f reaches about depth 8 — decent ; L L L |
chess program i Vs S S '

Evaluation Functions

= Function which scores non-terminals

Black to move White to move

White slightly better Black winning

= |deal function: returns the utility of the position
= |n practice: typically weighted linear sum of features:

Eval(s) = w1 f1(s) +wafo(s) + ... + wnfn(s)

= e.g. f,(s) = (num white queens — num black queens), etc.

Function Approximation

= Problem: inefficient to learn
each state’s utility (or eval
function) one by one

= Solution: what we learn about
one state (or position) should
generalize to similar states White to move

= Very much like supervised learning Black winning

= If states are treated entirely
independently, we can only learn
on very small state spaces

Linear Value Functions

= Another option: values are linear 3 | osi2 | oses | 0otz
functions of features of states (or
action-state pairs) 2 | o762 . 0se0 | [T
[79(5) — ngfk(s) 1 0705 | 0.655 | 0611 | 0.388
k 1 2 3 4
= Good if you can describe states well
using a few features (e.g. for game 3 10.80|0.850.90 [0.95
playing board evaluations)
2 | 0.70 . 0.80 |0.85
= Now we only have to learn a few
weights rather than a value for ' [0600.65 [0.70 (0.75
each state 1 2 s 4

Up(s) = 0.3+ 0.052+ 0.1y

Recap: Model-Free Learning

= Recall MDP value updates for a given estimate of U
= If you know the model T, use Bellman update

U(s) «— R(s) +~ max Z U(sNT(s,a,s)

)

= Temporal difference learning (TD)
= Make (epsilon greedy) action choice (or follow a provided policy)

w(s) = arg max > U(sNT(s,a,s)

S
= Update using results of the action

U(s) — (1= a)U(s) + a (R(s) +7U(s))

Example: Tabular Value Updates

= Example: Blackjack

+1 for win, -1 for loss or bust, 0 for tie

Our hand shows 14, current policy says “hit”
Current U(s) is 0.5

We hit, get an 8, bust (end up in s’ = “lose”)

= Update

Old U(s) = 0.5

Observed R(s) =0

OldU(s) =-1

New U(s) = U(s) + a [y (R(s) + U(s") = U(s)]

fa=0.1y=1.0

New U(s)=0.5+0.1[0+-1-0.5]
=0.5+0.1[-1.51=0.35

TD Updates: Linear Values

= Assume a linear value function:
Up(s) =D 0, f1i(s)
k
= Can almost do a TD update:

U(s) —U(s) + cx([;’{(x) +~U(sN] - ((a))

= Problem: we can't “increment” U(s) explicitly
= Solution: update the weights of the features at that state

0 — 0% + a([R(s) + YU ()] = U(s)) fu(s)

Learning Eval Parameters with TD

= |deally, want eval(s) to be the utility of s

= |dea: use techniques from reinforcement learning
= Samuel’'s 1959 checkers system
= Tesauro’s 1992 backgammon system (TD-Gammon)

= Basic approach: temporal difference updates
= Beginin state s
= Choose action using limited minimax search
= See what opponent does
= End up in state s’
= Do a value update of U(s) using U(s")

= Not guaranteed to converge against an adversary, but can work
in practice

Q-Learning

= With TD updates on values
= You don't need the model to update the utility estimates
= You still do need it to figure out what action to take!

= Q-Learning with TD updates
= No model needed to learn or to choose actions

Qi—l—l(a: S) — (1 — (}:)Qi(aw S)+
a (R(s) +~vymax,Q;(d,s"))

m(s) = argmaxQ(a,s)

TD Updates for Linear Qs

= Can use TD learning with linear Qs
= (Actually it's just like the perceptron!)
» Old Q-learning update:

O(a.s) — Q(a. s) + a (R(s) +ymaxQ(a,s) - Q(a .s))

= Simply update weights of features in Q,(a,s)

0 «— 0, + « (h’.(,‘w‘) + 9 ﬂ’:f&}lx Qp(d',s") — Qy(a, s)) fr(a,s)

Coming Up

» Real-world applications
» | arge-scale machine / reinforcement learning
» NLP: language understanding and translation
= Vision: object and face recognition

