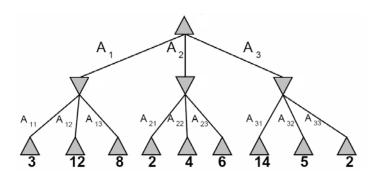
CS 188: Artificial Intelligence Spring 2006

Lecture 25: Games II 4/20/2006

Dan Klein - UC Berkeley

Recap: Minimax Trees

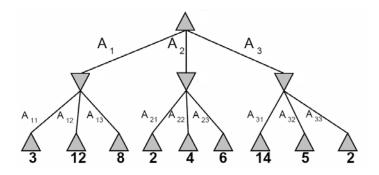


Minimax Search

```
function MAX-VALUE(state) returns a utility value if Terminal-Test(state) then return Utility(state) v \leftarrow -\infty for a, s in Successors(state) do v \leftarrow \text{Max}(v, \text{Min-Value}(s)) return v

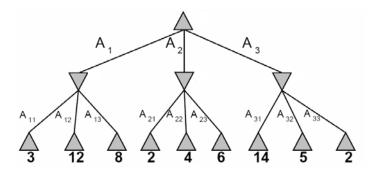
function Min-Value(state) returns a utility value if Terminal-Test(state) then return Utility(state) v \leftarrow \infty for a, s in Successors(state) do v \leftarrow \text{Min}(v, \text{Max-Value}(s)) return v
```

DFS Minimax



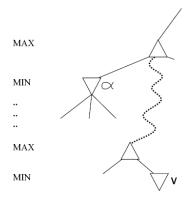
α - β Pruning Example

[Code in book]



α - β Pruning

- General configuration
 - α is the best value (to MAX) found so far off the current path
 - If V is worse than α, MAX will avoid it, so prune V's branch
 - Define β similarly for MIN

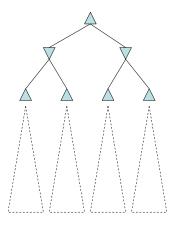


α - β Pruning Properties

- Pruning has no effect on final result
- Good move ordering improves effectiveness of pruning
- With "perfect ordering":
 - Time complexity drops to O(b^{m/2})
 - Doubles solvable depth
 - Full search of, e.g. chess, is still hopeless!
- A simple example of metareasoning, here reasoning about which computations are relevant

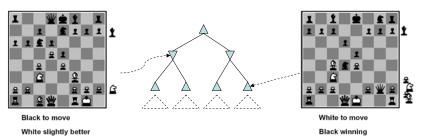
Resource Limits

- Cannot search to leaves
- Limited search
 - Instead, search a limited portion of the tree
 - Replace terminal utilities with an eval function for non-terminal positions
- Guarantee of optimal play is gone
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - α - β reaches about depth 8 decent chess program



Evaluation Functions

Function which scores non-terminals



- Ideal function: returns the utility of the position
- In practice: typically weighted linear sum of features:

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

• e.g. $f_1(s) = \text{(num white queens - num black queens), etc.}$

Function Approximation

- Problem: inefficient to learn each state's utility (or eval function) one by one
- Solution: what we learn about one state (or position) should generalize to similar states
 - Very much like supervised learning
 - If states are treated entirely independently, we can only learn on very small state spaces

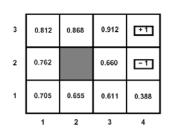
White to move Black winning

Linear Value Functions

 Another option: values are linear functions of features of states (or action-state pairs)

$$\widehat{U}_{\theta}(s) = \sum_{k} \theta_{k} f_{k}(s)$$

- Good if you can describe states well using a few features (e.g. for game playing board evaluations)
- Now we only have to learn a few weights rather than a value for each state



3	0.80	0.85	0.90	0.95
2	0.70		0.80	0.85
1	0.60	0.65	0.70	0.75
	1	2	3	4

$$\hat{U}_{\theta}(s) = 0.3 + 0.05x + 0.1y$$

Recap: Model-Free Learning

- Recall MDP value updates for a given estimate of U
 - If you know the model T, use Bellman update

$$U(s) \leftarrow R(s) + \gamma \max_{a} \sum_{s'} U(s')T(s, a, s')$$

- Temporal difference learning (TD)
 - Make (epsilon greedy) action choice (or follow a provided policy)

$$\pi(s) = \arg\max_{a} \sum_{s'} U(s') T(s, a, s')$$

Update using results of the action

$$U(s) \leftarrow (1 - \alpha)U(s) + \alpha \left(R(s) + \gamma U(s')\right)$$

Example: Tabular Value Updates

- Example: Blackjack
 - +1 for win, -1 for loss or bust, 0 for tie
 - Our hand shows 14, current policy says "hit"
 - Current U(s) is 0.5
 - We hit, get an 8, bust (end up in s' = "lose")
- Update
 - Old U(s) = 0.5
 - Observed R(s) = 0
 - Old U(s') = -1
 - New U(s) = U(s) + α [γ (R(s) + U(s') U(s)]
 - If $\alpha = 0.1$, $\gamma = 1.0$
 - New U(s) = 0.5 + 0.1 [0 + -1 0.5] = 0.5 + 0.1 [-1.5] = 0.35

TD Updates: Linear Values

Assume a linear value function:

$$\hat{U}_{\theta}(s) = \sum_{k} \theta_{k} f_{k}(s)$$

Can almost do a TD update:

$$U(s) \leftarrow U(s) + \alpha ([R(s) + \gamma U(s')] - U(s))$$

- Problem: we can't "increment" U(s) explicitly
- Solution: update the weights of the features at that state

$$\theta_k \leftarrow \theta_k + \alpha ([R(s) + \gamma U(s')] - U(s)) f_k(s)$$

Learning Eval Parameters with TD

- Ideally, want eval(s) to be the utility of s
- Idea: use techniques from reinforcement learning
 - Samuel's 1959 checkers system
 - Tesauro's 1992 backgammon system (TD-Gammon)
- Basic approach: temporal difference updates
 - Begin in state s
 - Choose action using limited minimax search
 - See what opponent does
 - End up in state s'
 - Do a value update of U(s) using U(s')
 - Not guaranteed to converge against an adversary, but can work in practice

Q-Learning

- With TD updates on values
 - You don't need the model to update the utility estimates
 - You still do need it to figure out what action to take!
- Q-Learning with TD updates
 - No model needed to learn or to choose actions

$$Q_{i+1}(a,s) \leftarrow (1-\alpha)Q_i(a,s) + \alpha \left(R(s) + \gamma \max_{a'} Q_i(a',s')\right)$$

$$\pi(s) = \arg\max_{a} Q(a, s)$$

TD Updates for Linear Qs

- Can use TD learning with linear Qs
 - (Actually it's just like the perceptron!)
 - Old Q-learning update:

$$Q(a,s) \leftarrow Q(a,s) + \alpha \left(R(s) + \gamma \max_{a'} Q(a',s') - Q(a,s) \right)$$

Simply update weights of features in Q_θ(a,s)

$$\theta_k \leftarrow \theta_k + \alpha \left(R(s) + \gamma \max_{a'} Q_{\theta}(a', s') - Q_{\theta}(a, s) \right) f_k(a, s)$$

Coming Up

- Real-world applications
 - Large-scale machine / reinforcement learning
 - NLP: language understanding and translation
 - Vision: object and face recognition