
1

CS 188: Artificial Intelligence
Spring 2006

Lecture 25: Games II
4/20/2006

Dan Klein – UC Berkeley

Recap: Minimax Trees

Minimax Search DFS Minimax

α-β Pruning Example
[Code in book]

α-β Pruning

General configuration
α is the best value (to
MAX) found so far off
the current path

If V is worse than α,
MAX will avoid it, so
prune V’s branch

Define β similarly for
MIN

2

α-β Pruning Properties
Pruning has no effect on final result

Good move ordering improves effectiveness of pruning

With “perfect ordering”:
Time complexity drops to O(bm/2)
Doubles solvable depth
Full search of, e.g. chess, is still hopeless!

A simple example of metareasoning, here reasoning
about which computations are relevant

Resource Limits
Cannot search to leaves

Limited search
Instead, search a limited portion of the
tree
Replace terminal utilities with an eval
function for non-terminal positions

Guarantee of optimal play is gone

Example:
Suppose we have 100 seconds, can
explore 10K nodes / sec
So can check 1M nodes per move
α-β reaches about depth 8 – decent
chess program

Evaluation Functions
Function which scores non-terminals

Ideal function: returns the utility of the position
In practice: typically weighted linear sum of features:

e.g. f1(s) = (num white queens – num black queens), etc.

Function Approximation

Problem: inefficient to learn
each state’s utility (or eval
function) one by one

Solution: what we learn about
one state (or position) should
generalize to similar states

Very much like supervised learning
If states are treated entirely
independently, we can only learn
on very small state spaces

Linear Value Functions
Another option: values are linear
functions of features of states (or
action-state pairs)

Good if you can describe states well
using a few features (e.g. for game
playing board evaluations)

Now we only have to learn a few
weights rather than a value for
each state

0.60

0.70

0.80 0.85

0.65 0.70

0.80

0.90

0.75

0.85

0.95

Recap: Model-Free Learning
Recall MDP value updates for a given estimate of U

If you know the model T, use Bellman update

Temporal difference learning (TD)
Make (epsilon greedy) action choice (or follow a provided policy)

Update using results of the action

3

Example: Tabular Value Updates

Example: Blackjack
+1 for win, -1 for loss or bust, 0 for tie
Our hand shows 14, current policy says “hit”
Current U(s) is 0.5
We hit, get an 8, bust (end up in s’ = “lose”)

Update
Old U(s) = 0.5
Observed R(s) = 0
Old U(s’) = -1
New U(s) = U(s) + α [γ (R(s) + U(s’) – U(s)]
If α = 0.1, γ = 1.0
New U(s) = 0.5 + 0.1 [0 + -1 – 0.5]

= 0.5 + 0.1 [-1.5] = 0.35

TD Updates: Linear Values

Assume a linear value function:

Can almost do a TD update:

Problem: we can’t “increment” U(s) explicitly
Solution: update the weights of the features at that state

Learning Eval Parameters with TD

Ideally, want eval(s) to be the utility of s
Idea: use techniques from reinforcement learning

Samuel’s 1959 checkers system
Tesauro’s 1992 backgammon system (TD-Gammon)

Basic approach: temporal difference updates
Begin in state s
Choose action using limited minimax search
See what opponent does
End up in state s’
Do a value update of U(s) using U(s’)
Not guaranteed to converge against an adversary, but can work
in practice

Q-Learning

With TD updates on values
You don’t need the model to update the utility estimates
You still do need it to figure out what action to take!

Q-Learning with TD updates
No model needed to learn or to choose actions

TD Updates for Linear Qs

Can use TD learning with linear Qs
(Actually it’s just like the perceptron!)
Old Q-learning update:

Simply update weights of features in Qθ(a,s)

Coming Up

Real-world applications
Large- scale machine / reinforcement learning
NLP: language understanding and translation
Vision: object and face recognition

