CS 188: Artificial Intelligence
Spring 2006

Lecture 25: Games Il
4/20/2006

Dan Klein — UC Berkeley

Recap: Minimax Trees

Minimax Search

Tunction Max-VaLve(state) roturns a wbility valur

if TErmsaL-TesT({sf0fe) then return UTiniry(stele)
e 0
for a. sin Successons(state) do ve— Max(e, MiN-VaLUE(s))
return ¢
function Mix-VaLve{stafe) returns o ufility value
if TErmNAL-TEsT{slale) then return Uty {stafe)
{r o= 20
for o, s in SuCcEssoRs(state) do ve— MNiN{r, Max-VaLug(s))
roeturn

DFS Minimax

o-p Pruning Example

= [Code in book]

o-p Pruning

= General configuration

= o is the best value (to
MAX) found so far off

MAX
the current path
MIN
= If Vis worse than a,
MAX will avoid it, so
prune V’s branch
MAX
= Define B similarly for M

MIN

a-p Pruning Properties

Pruning has no effect on final result
Good move ordering improves effectiveness of pruning

With “perfect ordering”:
= Time complexity drops to O(b™2)
= Doubles solvable depth
= Full search of, e.g. chess, is still hopeless!

A simple example of metareasoning, here reasoning
about which computations are relevant

Resource Limits

= Cannot search to leaves

= Limited search
= Instead, search a limited portion of the
tree
= Replace terminal utilities with an eval
function for non-terminal positions

= Guarantee of optimal play is gone

= Example:

= Suppose we have 100 seconds, can
explore 10K nodes / sec
So can check 1M nodes per move
a-B reaches about depth 8 — decent
chess program

Evaluation Functions

Function which scores non-terminals

Whits b meve

Black winning

Ideal function: returns the utility of the position
In practice: typically weighted linear sum of features:

Eval(s) = w1 f1(s) +wofo(s) + ...+ wnfn(s)

e.g. f,(s) = (num white queens — num black queens), etc.

Function Approximation

= Problem: inefficient to learn
each state’s utility (or eval
function) one by one

= Solution: what we learn about
one state (or position) should
generalize to similar states
= Very much like supervised learning

= |f states are treated entirely
independently, we can only learn
on very small state spaces

Black winning

Linear Value Functions

Another option: values are linear
functions of features of states (or
action-state pairs) 2

amz |

Tp(s) = > 0 fr(s) !
%

= Good if you can describe states well

using a few features (e.g. for game 3 0.95
playing board evaluations)
2 0.85
Now we only have to learn a few
' 0.75

weights rather than a value for
each state T2 1 4

Uy(s) = 0.3+ 0.05z + 0.1y

Recap: Model-Free Learning

= Recall MDP value updates for a given estimate of U
= If you know the model T, use Bellman update

U(s) « R(s) + v max Z U ()T (s,a,s")

= Temporal difference learning (TD)
= Make (epsilon greedy) action choice (or follow a provided policy)

7w(s) = arg max Z U(sNT(s,a,s")
a S
= Update using results of the action

U(s) « (1= a)U(s) +a (R(s) + 1 U(s))

Example: Tabular Value Updates

= Example: Blackjack

+1 for win, -1 for loss or bust, O for tie

Our hand shows 14, current policy says “hit”
Current U(s) is 0.5

We hit, get an 8, bust (end up in s’ = “lose”)

= Update

Old U(s) = 0.5

Observed R(s) =0

old U(s) = -1

New U(s) = U(s) + o[7 (R(s) + U(s) — U(s)]

Ifaa=0.1,y=1.0

New U(s) =0.5+0.1[0+-1-0.5]
=05+0.1[-1.5]=0.35

TD Updates: Linear Values

= Assume a linear value function:
Up(s) = %9k.fk«(v9)
= Can almost do a TD update:
U(s) — U(s) +af[R(s) +vU(sH] = U(s))

= Problem: we can't “increment” U(s) explicitly
= Solution: update the weights of the features at that state

O — O + o([R(s) + 7 U ()] = U()) fuls)

Learning Eval Parameters with TD

= |deally, want eval(s) to be the utility of s

= |dea: use techniques from reinforcement learning
= Samuel's 1959 checkers system
= Tesauro’s 1992 backgammon system (TD-Gammon)

= Basic approach: temporal difference updates
= Begin in state s

Choose action using limited minimax search

See what opponent does

End up in state s’

Do a value update of U(s) using U(s’)

Not guaranteed to converge against an adversary, but can work
in practice

Q-Learning

= With TD updates on values
= You don't need the model to update the utility estimates
= You still do need it to figure out what action to take!

= Q-Learning with TD updates
= No model needed to learn or to choose actions

Qir1(a,s) — (1 —a)Q;(a, s)+
a (R(s) + v max Q;(a’, s"))

w(s) = argmaxQ(a,s)

TD Updates for Linear Qs

= Can use TD learning with linear Qs
= (Actually it's just like the perceptron!)
= Old Q-learning update:
Qla,s) — Qa,s) +a (;:(.g. FymaxQ(d, ") — Q(a, s))

= Simply update weights of features in Q,(a,s)

O, — O + o (R(s) + 7 maxQp(a’, s') — Qpla, *)) fila,s)

Coming Up

= Real-world applications
= Large <ale machine / reinforcement learning
= NLP: language understanding and translation
= Vision: object and face recognition

