Game theory: study of strategic situations, usually simultaneous actions

A game has:
- Players
- Actions
- Payoff matrix

Example: prisoner’s dilemma

Prisoner’s Dilemma

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Testify</td>
<td>Refuse</td>
</tr>
<tr>
<td>Testify</td>
<td>-5, -5</td>
<td>-10, 0</td>
</tr>
<tr>
<td>Refuse</td>
<td>0, -10</td>
<td>-1, -1</td>
</tr>
</tbody>
</table>
Strategies

- **Strategy** = policy

- **Pure strategy**
 - Deterministic policy
 - In a one-move game, just a move

- **Mixed strategy**
 - Randomized policy
 - Ever good to use one?

- **Strategy profile**: a spec of one strategy per player

- **Outcome**: each strategy profile results in an (expected) number for each player

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testify</td>
<td>-5, -5</td>
<td>-10, 0</td>
</tr>
<tr>
<td>Refuse</td>
<td>0, -10</td>
<td>-1, -1</td>
</tr>
</tbody>
</table>

Two-Finger Morra

<table>
<thead>
<tr>
<th></th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>-2, 2</td>
</tr>
<tr>
<td>Two</td>
<td>3, -3</td>
</tr>
</tbody>
</table>

Dominance and Optimality

- **Strategy Dominance**:
 - A strategy s for A (strictly) dominates s' if it produces a better outcome for A, for any B strategy

- **Outcome Dominance**:
 - An outcome o Pareto dominates o' if all players prefer o to o'
 - An outcome is Pareto optimal if there is no outcome that all players would prefer

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testify</td>
<td>-5, -5</td>
<td>-10, 0</td>
</tr>
<tr>
<td>Refuse</td>
<td>0, -10</td>
<td>-1, -1</td>
</tr>
</tbody>
</table>

Two-Finger Morra

<table>
<thead>
<tr>
<th></th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>-2, 2</td>
</tr>
<tr>
<td>Two</td>
<td>3, -3</td>
</tr>
</tbody>
</table>

Prisoner’s Dilemma

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testify</td>
<td>-5, -5</td>
<td>-10, 0</td>
</tr>
<tr>
<td>Refuse</td>
<td>0, -10</td>
<td>-1, -1</td>
</tr>
</tbody>
</table>
Equilibria

- In the prisoner’s dilemma:
 - What will A do?
 - What will B do?
 - What’s the dilemma?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testify</td>
<td>-5, -5</td>
<td>-10, 0</td>
</tr>
<tr>
<td>Refuse</td>
<td>0, -10</td>
<td>-1, -1</td>
</tr>
</tbody>
</table>

- Both testifying is a (Nash) equilibrium
 - Neither player can benefit from a unilateral change in strategy
 - I.e., it’s a local optimum (not necessarily global)
 - Nash showed that every game has such an equilibrium
 - Note: not every game has a dominant strategy equilibrium

- What do we have to change for the prisoners to refuse?
 - Change the payoffs
 - Consider repeated games
 - Limit the computational ability of the agents
 - How would we model a “code of thieves”?

Coordination Games

- No dominant strategy
 - But, two (pure) Nash equilibria

<table>
<thead>
<tr>
<th>Technology Choice</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVD</td>
<td>5,5</td>
<td>8,8</td>
</tr>
<tr>
<td>HD-DVD</td>
<td>-2, -1</td>
<td>-1, -1</td>
</tr>
</tbody>
</table>

- What should agents do?
 - Can sometimes choose Pareto optimal Nash equilibrium
 - But may be ties!
 - Naturally gives rise to communication
 - Also: correlated equilibria

<table>
<thead>
<tr>
<th>Driving Direction</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>1,1</td>
<td>-1, -1</td>
</tr>
<tr>
<td>Right</td>
<td>-1, -1</td>
<td>1,1</td>
</tr>
</tbody>
</table>
Mixed Strategy Games

- What's the Nash equilibrium?
 - No pure strategy equilibrium
 - Must look at mixed strategies

- Mixed strategies:
 - Distribution over actions per state
 - In a one-move game, a single distribution
 - For Morra, a single number \(p_{\text{even}} \) specifies the strategy

- How to choose the optimal mixed strategy?

(Zero-Sum) Minimax Strategies

- Idea: force one player to choose and declare a strategy first
 - Say E reveals first
 - For each E strategy, O has a minimax response
 - Utility of the root favors O (why?) and is -3 (from E's perspective)
 - If O goes first, root is 2 (for E)
 - If these two utilities matched, we would know the utility of the maximum equilibrium

- Must look at mixed strategies
Continuous Minimax

- Imagine a minimax tree:
 - Instead of the two pure strategies, first player has infinitely many mixed ones
 - Note that second player should always respond with a pure strategy (why?)

- Here, can calculate the minimax (and maximin) values
 - Both are $\frac{1}{2}$ (from O’s perspective)
 - Correspond to $[7/12; 1, 5/12; 2]$ for both players

Two-Finger Morra

<table>
<thead>
<tr>
<th></th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>-2,2</td>
</tr>
<tr>
<td>Two</td>
<td>3, -3</td>
</tr>
</tbody>
</table>

Repeated Games

- What about repeated games?
 - E.g. repeated prisoner’s dilemma
 - Future responses, retaliation becomes an issue
 - Strategy can condition on past experience

- Repeated prisoner’s dilemma
 - Fixed numbers of games causes repeated betrayal
 - If agents unsure of number of future games, other options
 - E.g. perpetual punishment: silent until you’re betrayed, then testify thereafter
 - E.g. tit-for-tat: do what was done to you last round
 - It’s enough for your opponent to believe you are incapable of remembering the number of games played (doesn’t actually matter whether the limitation really exists)
Partially Observed Games

- Much harder to analyze
 - You have to work with trees of belief states
 - Problem: you don’t know your opponent’s belief state!

- Newer techniques can solve some partially observable games
 - Mini-poker analysis shows, e.g., that bluffing can be a rational action
 - Randomization: not just for being unpredictable, also useful for minimizing what opponent can learn from your actions

The Ultimatum Game

- Game theory can reveal interesting issues in social psychology

- E.g. the ultimatum game
 - Proposer: receives $x, offers split $k / $(x-k)
 - Acceptor: either
 - Accepts: gets $k, proposer gets $(x-k)
 - Rejects: neither gets anything

- Nash equilibrium?
 - Any strategy profile where proposer offers $k and accepter will accept $k or greater
 - But that’s not the interesting part…

- Issues:
 - Why do people tend to reject offers which are very unfair (e.g. $20 from $100)?
 - Irrationality?
 - Utility of $20 exceeded by utility of punishing the unfair proposer?
 - What about if x is very very large?
Mechanism Design

- **One use of game theory: mechanism design**
 - Designing a game which induces desired behavior in rational agents

- **E.g. avoiding tragedies of the commons**
 - Classic example: farmers share a common pasture
 - Each chooses how many goats to graze
 - Adding a goat gains utility for that farmer
 - Adding a goat slightly degrades the pasture
 - Inevitable that each farmer will keep adding goats until the commons is destroyed (tragedy!)

- **Classic solution: charge for use of the commons**
 - Prices need to be set to produce the right behavior

Auctions

- **Example: auctions**
 - Consider auction for one item
 - Each bidder i has value v_i and bids b_i for item

- **English auction: increasing bids**
 - How should bidder i bid?
 - What will the winner pay?
 - Why is this not an optimal result?

- **Sealed single-bid auction, highest pays bid**
 - How should bidder i bid?
 - Why is bidding your value no longer dominant?
 - Why is this auction not optimal?

- **Sealed single-bid second-price auction**
 - How should bidder i bid?
 - Bid v_i – why?