
1

CS 188: Artificial Intelligence
Spring 2006

Lecture 3: Search
1/24/2006

Dan Klein – UC Berkeley

Many slides from either Stuart Russell or Andrew Moore

Administrivia

Final Exam Issues

Sections: starting 1/30
101 (M 10am): B0051 Hildebrand
104 (M 4pm): 002 Evans

Written Assignment 1
Reminder: can solve in groups
But: individual write- ups

Today

Formulating Search Problems

Uniformed Search
Depth- First Search
Breadth- First Search
Uniform- Cost Search

Properties of Search Algorithms

Example: Romania

Single State Problems
A search problem is defined by four items:

Initial state: e.g. Arad
Successor function S(x) = set of action–state pairs:

e.g., S(Arad) = {<Arad → Zerind, Zerind>, … }
Goal test, can be

explicit, e.g., x = Bucharest
implicit, e.g., Checkmate(x)

Path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x,a,y) is the step cost, assumed to be ≥ 0

A solution is a sequence of actions leading from the
initial state to a goal state

Search Gone Wrong?

2

Example: Vacuum World

Can represent problem as a state graph
Nodes are states
Arcs are actions
Arc weights are costs

Example: 8-Puzzle

What are the states?
What are the actions?
What states can I reach from the start state?
What should the costs be?

Example: N-Queens

What are the states?
What is the start?
What is the goal?
What are the actions?
What should the costs be?

Example: Assembly

What are the states?
What is the goal?
What are the actions?
What should the costs be?

Example: Romania A Search Tree

Search trees:
Represent the branching paths through a state graph.
Usually much larger than the state graph.
Can a finite state graph give an infinite search tree?

3

Tree Search

Basic solution method for graph problems
Offline simulated exploration of state space
Searching a model of the space, not the real world

Tree Search

States vs. Nodes
Problem graphs have problem states

Have successors

Search trees have search nodes
Have parents, children, depth, path cost, etc.
Expand uses successor function to create new search tree nodes
The same problem state may be in multiple search tree nodes

A Search Graph

How do we get from S to G? And what’s the
smallest possible number of transitions?

START

GOAL

d

b

p
q

c

e

h

a

f

r

Depth First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp

h
fd

b
a

c

e

r

Expand deepest
node first:

Fringe is a LIFO
stack

Search Algorithm Properties

Complete? Guaranteed to find a solution if one exists?
Optimal? Guaranteed to find the least cost path?
Time complexity?
Space complexity?

Variables:

Depth of the shallowest solutions
Cost of least cost solutionC*

Max depth of the search treem

The average branching factor B
(the average number of successors)

b
Number of states in the problemn

4

DFS

Infinite paths make DFS incomplete…
How can we fix this?

SpaceTimeOptimalCompleteAlgorithm

O(LMAX)O(BLMAX)NNDepth First
Search

DFS

START

GOAL

a

b

N N Infinite Infinite

DFS
With cycle checking, DFS is complete.

When is DFS optimal?

w/ Path
Checking

DFS
SpaceTimeOptimalCompleteAlgorithm

Y N O(bm+1) O(bm)

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

Breadth First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Search

Tiers

Expand shallowest
node first:

Fringe is a FIFO
queue

BFS

When is BFS optimal?

w/ Path
Checking

DFS

BFS

SpaceTimeOptimalCompleteAlgorithm

Y N O(bm+1) O(bm)

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

Y N* O(bs+1) O(bs)

bs nodes

Comparisons

When will BFS outperform DFS?

When will DFS outperform BFS?

Costs on Actions

Notice that BFS finds the shortest path in terms of number of
transitions. It does not find the least-cost path.
We will quickly cover an algorithm which does find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

1

4

4

15

1

3
2

2

5

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Expand cheapest node first:

Fringe is a priority queue
S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 1

15

1

2

Cost
contours

2

Priority Queue Refresher

returns the key with the lowest value, and
removes it from the queue.

pq.dequeue()

inserts (key, value) into the queue.pq.setPriority(key, value)

A priority queue is a data structure in which you can insert
and retrieve (key, value) pairs with the following operations:

You can promote or demote keys by resetting their priorities
Unlike a regular queue, insertions into a priority queue are not
constant time, usually O(log n)
We’ll need priority queues for most cost-sensitive search
methods.

Uniform Cost Search

What will UCS do for this graph?

What does this mean for completeness?

START

GOAL

a

b
1

1

0

0

Uniform Cost Search

BFS

w/ Path
Checking

DFS

UCS

SpaceTimeOptimalCompleteAlgorithm

Y N O(bm+1) O(bm)

…
b

C*/ tiers

Y N O(bs+1) O(bs)

Y* Y O(C* bC*/) O(bC*/)

We’ll talk more
about uniform cost
search’s failure
cases next class…

Iterative Deepening
Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of
length 1 or less. (DFS gives up on any path of
length 2)

2. If “1” failed, do a DFS which only searches paths
of length 2 or less.

3. If “2” failed, do a DFS which only searches paths
of length 3 or less.

….and so on.

BFS

w/ Path
Checking

DFS

ID

SpaceTimeOptimalCompleteAlgorithm

Y N O(bm+1) O(bm)

Y N* O(bs+1) O(bs)

Y N* O(bd+1) O(bd)

…
b

Extra Work?

Failure to detect repeated states can cause
exponentially more work. Why?

6

Graph Search

In BFS, for example, we shouldn’t bother
expanding the circled nodes (why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Graph Search

Very simple fix: never expand a node twice

Uniform Cost Issues

Where will uniform cost explore?
Why?

What is wrong
here? Start Goal

Greedy Search

Greedy Search

Expand the node that seems closest…

What can go wrong?

Euclidian Heuristic

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 9

81

1

2

3

5

34

4

15

1

2
5

2

h=12

h=11

h=8

h=8

h=5 h=4

h=6

h=9

h=0

h=4

h=6h=11

7

Best First Greedy Search

SpaceTimeOptimalCompleteAlgorithm
Greedy Best-First
Search

Can we make it optimal? Next class!

Y* N O(bm) O(bm)

…
b

m

