CS 188: Artificial Intelligence
Spring 2006

Lecture 3: Search
1/24/2006

Dan Klein — UC Berkeley

Many slides from either Stuart Russell or Andrew Moore

Administrivia

= Final Exam Issues

= Sections: starting 1/30
= 101 (M 10am): B0051 Hildebrand
= 104 (M 4pm): 002 Evans

= Written Assignment 1
= Reminder: can solve in groups
= But: individual write s

Today

= Formulating Search Problems

= Uniformed Search
= Depth frst Search
= Breadth frst Search
= Uniform @st Search

= Properties of Search Algorithms

Example: Romania

Single State Problems

= A search problem is defined by four items:

= |nitial state: e.g. Arad
= Successor function S(x) = set of action—state pairs:
e.g., S(Arad) = {<Arad — Zerind, Zerind>, ... }
= Goal test, can be
= explicit, e.g., x = Bucharest
= implicit, e.g., Checkmate(x)
= Path cost (additive)
= e.g., sum of distances, number of actions executed, etc.
= c(x,a,y) is the step cost, assumed to be 2 0

= A solution is a sequence of actions leading from the
initial state to a goal state

Search Gone Wrong?

QI os

Example: Vacuum World

] 5
o~] - ..]
10l M 5 OO 5 W M O

— i -
. [
' m. .ﬂ '
3
5 5

= Can represent problem as a state graph
= Nodes are states
= Arcs are actions
= Arc weights are costs

Example: 8-Puzzle

=

CE] LG
[+] [+][5
3 f] an

Start State Goal State

¥

2

What are the states?

What are the actions?

What states can | reach from the start state?
What should the costs be?

Example: N-Queens

What are the states?
What is the start?

What is the goal?

What are the actions?
What should the costs be?

Example: Assembly

’ e ~ n,z-.‘_‘f‘
1O 299
= What are the states?
= What is the goal?

= What are the actions?
= What should the costs be?

Example: Romania

Vaslui

A Search Tree

= Search trees:
= Represent the branching paths through a state graph.
= Usually much larger than the state graph.
= Can a finite state graph give an infinite search tree?

Tree Search

= Basic solution method for graph problems
= Offline simulated exploration of state space
= Searching a model of the space, not the real world

function TREE-SEARCH| problem, strufeqy) returns a solution, or failure

initualize the search tree uwsing the initial state of problem
laop do
if there are no candidates for expansion then re
choose a leaf nade for expansion accoeding to s

turn failure

uteqy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

el

Tree Search

Funiction TrEs-Seanon(problem, fringe) retuens a sclution, o fallure
InsERT{ MAKE-NopE(ISImAL-STATE[problem]), fringe)
loop do
on return failure
-FroxT(fringe)

1 STATE newde)) then return SoLuros]med)
— INsERTALL{ EXPAND] nixd, ablem), fringr)
Tunction Expasof aode, problem) returns a set of nodes
canm the empty se! — Sran]
for each action, result in SvccEsson-Fr(problem, state) do
—a new Nobk
PARENT-NopE]:] v, ACTION]| +— action; STaTE[]
Pari-Cost[] — PatieC nodd] +STEE-CosT stute, action, result)

DEPTH[3| = DEFTH[nod
add 5 to suorss o
return succrsso,

States vs. Nodes

= Problem graphs have problem states
= Have successors

= Search trees have search nodes
= Have parents, children, depth, path cost, etc.
= Expand uses successor function to create new search tree nodes
= The same problem state may be in multiple search tree nodes

parent. action

state | s || 4] Ml depih = 8

96

]

A Search Graph

How do we get from S to G? And what's the
smallest possible number of transitions?

Depth First Search

Expand deepest
node first:

Fringe is a LIFO
stack

Search Algorithm Properties

= Complete? Guaranteed to find a solution if one exists?
= Optimal? Guaranteed to find the least cost path?

= Time complexity?

= Space complexity?

Variables:

n Number of states in the problem

b The average branching factor B
(the average number of successors)

Cc* Cost of least cost solution

S Depth of the shallowest solution

m Max depth of the search tree

DFS

Algorithm Complete [Optimal Time Space
DFS |Deptnfist| N N Infinite Infinite

A
Can0
S

= Infinite paths make DFS incomplete...
= How can we fix this?

DFS

= With cycle checking, DFS is complete.

Breadth First Search

Expand shallowest
node first:

Fringe is a FIFO
queue

Search
®

Tiers

1 node
b nodes
b2 nodes
m tiers
b™ nodes
Algorithm Complete |Optimal |Time Space
DFS [Seains | Y N op™) o(bm)
= When is DFS optimal?
Algorithm Complete |Optimal |Time Space
S N o™ o(bm)
BFS Y N* O(bs*Y) O(b°)
1 node
b nodes
s tiers
b2 nodes
bs nodes
b™ nodes

= When is BFS optimal?

Comparisons

= When will BFS outperform DFS?

= When will DFS outperform BFS?

Costs on Actions

Notice that BFS finds the shortest path in terms of number of
transitions. It does not find the least-cost path.
We will quickly cover an algorithm which does find the least-cost path.

Uniform Cost Search

Expand cheapest node first:

Fringe is a priority queue

@ 3
D) N
P @
Cost @6 a
contours

Priority Queue Refresher

= A priority queue is a data structure in which you can insert
and retrieve (key, value) pairs with the following operations:

pq.setPriority(key, value) inserts (key, value) into the queue.

pq.dequeue() returns the key with the lowest value, and
removes it from the queue.

= You can promote or demote keys by resetting their priorities

= Unlike a regular queue, insertions into a priority queue are not
constant time, usually O(log n)

= We'll need priority queues for most cost-sensitive search
methods.

Uniform Cost Search

= What will UCS do for this graph?

= What does this mean for completeness?

Uniform Cost Search

Algorithm Complete |Optimal |Time Space
DFS |Gheains | Y N o™ o(bm)
BFS Y N O(bs*Y) O(b°)
ucs Y* Y O(C* be'™) O(b®’™)

We'll talk more
about uniform cost
search’s failure
cases next class...

C*/-= tiers

lterative Deepening

Iterative deepening uses DFS as a subroutine:

b
1. Do a DFS which only searches for paths of
length 1 or less. (DFS gives up on any path of
length 2)
2. If “1” failed, do a DFS which only searches paths
of length 2 or less.
3. If “2” failed, do a DFS which only searches paths
of length 3 or less.
....and so on.
Algorithm Complete |Optimal |Time Space
I Path
DFS gnejkmg Y N O(b™1) O(bm)
BFS Y N* O(bs*t) O(b°)
ID Y N* O(b+1) O(bd)

Extra Work?

= Failure to detect repeated states can cause
exponentially more work. Why?

o
1 T

8 * B® e
1 r

c ® c® co ce co
1 r

D ®
1 A

Graph Search

Graph Search

= In BFS, for example, we shouldn’t bother
expanding the circled nodes (why?)

a h r
N
p g f ¢ G
| PN |
a ¢ 6 a
a

= Very simple fix: never expand a node twice

Function Grapu-SEarcn{ profdem, fringe) returns a solution, or failure
{« an empty set
— Inserr{ MAKE-NoDE(INFTIAL-STATE[problim]), fringe)
loop do

je is empty then return failure
ReMove-Froxr| fringe)

Uniform Cost Issues

= Where will uniform cost explore?
= Why?

= What is wrong
here? oal

SOAL-TEST proflcm, STAT 1) then return nodr
if STaTE[nor
add STa1
. SERTALL{ EXPARD{ nende, problea), fringe
f INSERTALL PANI b
end
74 B s
A Heamt 16
g3 v B w N
- T 2
Arwd O
e N\n 5
114 - —n N 7
A Vash 5
I e »
Qe hmmmulm \ / Lzl by
"--‘-,"__ a0 \, Saz Mehasdia 4
~guws | e] Orvden s
™ \ N . Pitesti =
o~ y rsove . "
Quenaas |48 // Wy, BB BN plen Vilees 19
78/ S8 a ', 86 bl et
s { Bucharst Ay Timbseara 1
oobrea g 120 | / / Urlceni
— Jo0 a relcenl
[Craiova Eode Vaslul 199
0 g Herind a4

Greedy Search

= Expand the node that seems closest...

Arnd

Fagmni

CEop D

253

= What can go wrong?

374

Euclidian Heuristic

Best First Greedy Search

Algorithm

Complete

Optimal

Time

Space

Greedy Best-First
Search

v+

O(b™)

O(b™)

= Can we make it optimal? Next class!

