
1

CS 188: Artificial Intelligence
Spring 2006

Lecture 4: A* Search (and Friends)
1/26/2006

Dan Klein – UC Berkeley

Many slides from either Stuart Russell or Andrew Moore

Today

A* Search

Heuristic Design

Local Search

2

Problem Graphs vs Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G
a

S

G

d

b

p q

c

e

h

a

f

r

We almost always
construct both on
demand – and we
construct as little
as possible.

Each NODE in in the
search tree is an
entire PATH in the
problem graph.

Uniform Cost Problems
Remember: explores
increasing cost contours

The good: UCS is
complete and optimal!

The bad:
Explores options in every
“direction”
No information about goal
location Start Goal

…

c ≤ 3

c ≤ 2
c ≤ 1

3

Best-First Search

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 9

81

1

2

3

5

34

4

15

1

2
5

2

h=12

h=11

h=8

h=8

h=5 h=4

h=6

h=9

h=0

h=4

h=6h=11

Best-First Search
A common case:

Best-first takes you straight
to the (wrong) goal

Worst-case: like a badly-
guided DFS in the worst
case

Can explore everything
Can get stuck in loops if no
cycle checking

Like DFS in completeness
(finite states w/ cycle
checking)

…
b

…
b

4

Combining Best-First and UCS
Uniform-cost orders by path cost, or backward cost g(n)
Best-first orders by goal proximity, or forward cost h(n)

What happens with each ordering?
A* orders by the sum: f(n) = g(n) + h(n)

S A CB G

h=3 h=2 h=1

2

4

11 2

h=4 h=0

When should A* terminate?

S

B

A

G

2

2

1

2
h = 1

h = 2

h = 0

h = 3

Should we stop when we enqueue a goal?

No: only stop when we dequeue a goal

5

Is A* Optimal?

A

GS

1
3

h = 6

h = 0

5

h = 7

What went wrong?
Actual bad goal cost > estimated good goal cost
We need estimates to be less than actual costs!

Admissible Heuristics

A heuristic is admissible (optimistic) if:

where is the true cost to a nearest goal

E.g. Euclidean distance on a map problem

Coming up with admissible heuristics is most of
what’s involved in using A* in practice.

6

Optimality of A*: Blocking

Proof:
What can go wrong?
We’d have to have to pop
a suboptimal goal off the
fringe queue
Imagine a suboptimal
goal G’ is on the queue
Consider any
unexpanded (fringe)
node n on a shortest path
to optimal G
n will be popped before G

…

This proof assumed
tree search! Where?

Optimality of A*: Contours

Consider what A* does:
Expands nodes in increasing total f value (f-contours)
Optimal goals have lower f value, so get expanded
first

Holds for graph search as
well, but we made a different
assumption. What?

7

Consistency
Wait, how do we know we expand in increasing f value?
Couldn’t we pop some node n, and find its child n’ to
have higher f value?
YES:

What do we need to do to fix this?
Consistency:
Real cost always exceeds reduction in heuristic

A

B

G

3
h = 0

h = 10

g = 10

h = 8

UCS vs A* Contours

Uniform-cost expanded
in all directions

A* expands mainly
toward the goal, but
does hedge its bets to
ensure optimality

Start Goal

Start Goal

8

Properties of A*

UCS = BFS*

A*

SpaceTimeOptimalCompleteAlgorithm

Y Y O(s bs)* O(bs)*

Assume all costs are 1 Assume one goal, non-goals have h(n) = g(G) - a

Y Y O(a ba) O(ba)

…
b

s tiers
…

b
a tiers

Uniform-Cost A*

Admissible Heuristics

Most of the work is in coming up with
admissible heuristics

Good news: usually admissible heuristics
are also consistent

More good news: inadmissible heuristics
are often quite effective (especially when
you have no choice)

9

8-Puzzle I

Number of tiles
misplaced?

Why is it admissible?

h(start) =

This is a relaxed-
problem heuristic

8

TILES
ID

Average nodes expanded when
optimal path has length…

2273913
3.6 x 1066,300112

…12 steps…8 steps…4 steps

8-Puzzle II
What if we had an
easier 8-puzzle where
any tile could slide any
one direction at any
time?
Total Manhattan
distance
Why admissible?

h(start) =

3 + 1 + 2 + …

= 18 MAN-
HATTAN

TILES

Average nodes expanded when
optimal path has length…

732512
2273913

…12 steps…8 steps…4 steps

10

8-Puzzle III

How about using the actual cost as a
heuristic?

Would it be admissible?
Would we save on nodes?
What’s wrong with it?

With A*, trade-off between quality of
estimate and work per node!

Trivial Heuristics, Dominance

Dominance:

Heuristics form a semi-lattice:
Max of admissible heuristics is admissible

Trivial heuristics
Bottom of lattice is the zero heuristic (what
does this give us?)
Top of lattice is the exact heuristic

11

Course Scheduling
From the university’s perspective:

Set of courses {c1, c2, … cn}
Set of room / times {r1, r2, … rn}
Each pairing (ck, rm) has a cost wkm
What’s the best assignment of courses to rooms?

States: list of pairings
Actions: add a legal pairing
Costs: cost of the new pairing

Admissible heuristics?

(Who can think of a cs170 answer to this problem?)

Other A* Applications

Machine translation
Statistical parsing
Speech recognition
Robot motion planning (next class)
Routing problems (see homework!)
Planning problems (see homework!)
…

12

Summary: A*

A* uses both backward costs and
(estimates of) forward costs

A* is optimal with admissible heuristics

Heuristic design is key: often use relaxed
problems

Local Search Methods

Queue-based algorithms keep fallback
options (backtracking)

Local search: improve what you have until
you can’t make it better

Generally much more efficient (but
incomplete)

13

Types of Problems
Planning problems:

We want a path to a solution
(examples?)
Usually want an optimal path
Incremental formulations

Identification problems:
We actually just want to know what
the goal is (examples?)
Usually want an optimal goal
Complete-state formulations
Iterative improvement algorithms

Example: N-Queens

Start wherever, move queens to reduce conflicts
Almost always solves large n-queens nearly instantly
How is this different from best-first search?

14

Hill Climbing

Simple, general idea:
Start wherever
Always choose the best neighbor
If no neighbors have better scores than
current, quit

Why can this be a terrible idea?
Complete?
Optimal?

What’s good about it?

Hill Climbing Diagram

Random restarts?
Random sideways steps?

15

Simulated Annealing
Idea: Escape local maxima by allowing downhill moves

But make them rarer as time goes on

Simulated Annealing
Theoretical guarantee:

Stationary distribution:
If T decreased slowly enough,
will converge to optimal state!

Is this an interesting guarantee?

Sounds like magic, but reality is reality:
The more downhill steps you need to escape, the less
likely you are to every make them all in a row
People think hard about ridge operators which let you
jump around the space in better ways

16

Beam Search
Like greedy search, but keep K states at all
times:

Variables: beam size, encourage diversity?
The best choice in MANY practical settings
Complete? Optimal?
Why do we still need optimal methods?

Greedy Search Beam Search

Genetic Algorithms

Genetic algorithms use a natural selection metaphor
Like beam search (selection), but also have pairwise
crossover operators, with optional mutation
Probably the most misunderstood, misapplied (and even
maligned) technique around!

17

Example: N-Queens

Why does crossover make sense here?
When wouldn’t it make sense?
What would mutation be?
What would a good fitness function be?

Continuous Problems
Placing airports in Romania

States: (x1,y1,x2,y2,x3,y3)
Cost: sum of squared distances to closest city

18

Gradient Methods

How to deal with continous (therefore infinite)
state spaces?
Discretization: bucket ranges of values

E.g. force integral coordinates
Continuous optimization

E.g. gradient ascent

More on this next class…
Image from vias.org

