CS 188: Artificial Intelligence Spring 2006

Lecture 4: A* Search (and Friends) 1/26/2006

Dan Klein - UC Berkeley

Many slides from either Stuart Russell or Andrew Moore

Today

- A* Search
- Heuristic Design
- Local Search

Problem Graphs vs Search Trees

Each NODE in in the search tree is an entire PATH in the problem graph.

We almost always construct both on demand - and we construct as little as possible.

Uniform Cost Problems

- Remember: explores increasing cost contours
- The good: UCS is complete and optimal!
- The bad:

- Explores options in every "direction"
- No information about goal location

Best-First Search

Best-First Search

- A common case:
- Best-first takes you straight to the (wrong) goal
- Worst-case: like a badlyguided DFS in the worst case

- Can explore everything
- Can get stuck in loops if no cycle checking
- Like DFS in completeness (finite states w/ cycle checking)

Combining Best-First and UCS

- Uniform-cost orders by path cost, or backward cost g(n)
- Best-first orders by goal proximity, or forward cost h(n)

- What happens with each ordering?
- A^{*} orders by the sum: $f(n)=g(n)+h(n)$

When should A^{*} terminate?

- Should we stop when we enqueue a goal?

- No: only stop when we dequeue a goal

Is A* Optimal?

- What went wrong?
- Actual bad goal cost > estimated good goal cost
- We need estimates to be less than actual costs!

Admissible Heuristics

- A heuristic is admissible (optimistic) if:

$$
h(n) \leq h^{*}(n)
$$

where $h^{*}(n)$ is the true cost to a nearest goal

- E.g. Euclidean distance on a map problem
- Coming up with admissible heuristics is most of what's involved in using A^{*} in practice.

Optimality of A*: Blocking

This proof assumed

- Proof: tree search! Where?
- What can go wrong?
- We'd have to have to pop a suboptimal goal off the fringe queue
- Imagine a suboptimal goal G^{\prime} is on the queue

- Consider any unexpanded (fringe)

$$
\text { node } n \text { on a shortest path }
$$

$$
\begin{aligned}
f(n) & \leq g(G) \\
g(G) & <g\left(G^{\prime}\right) \\
g\left(G^{\prime}\right) & =f\left(G^{\prime}\right) \\
f(n) & <f\left(G^{\prime}\right)
\end{aligned}
$$ to optimal G

- n will be popped before G

Optimality of A*: Contours

- Consider what A* does:
- Expands nodes in increasing total f value (f-contours)
- Optimal goals have lower f value, so get expanded first

Holds for graph search as well, but we made a different assumption. What?

Consistency

- Wait, how do we know we expand in increasing f value?
- Couldn't we pop some node n, and find its child n ' to have higher f value?
- YES:

- What do we need to do to fix this?
- Consistency: $h(n) \leq c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right)$
- Real cost always exceeds reduction in heuristic

UCS vs A* Contours

- Uniform-cost expanded in all directions

- A* expands mainly toward the goal, but does hedge its bets to ensure optimality

Properties of A*

Algorithm	Complete	Optimal	Time	Space
UCS $=$ BFS*	Y	Y	$\mathrm{O}\left(s b^{s}\right)^{*}$	$\mathrm{O}\left(b^{s}\right)^{*}$
$\mathrm{~A}^{*}$	Y	Y	$\mathrm{O}\left(a b^{a}\right)$	$\mathrm{O}\left(b^{a}\right)$

Assume all costs are $1 \quad$ Assume one goal, non-goals have $h(n)=g^{}(G)-a$
Uniform-Cost
A*

Admissible Heuristics

- Most of the work is in coming up with admissible heuristics
- Good news: usually admissible heuristics are also consistent
- More good news: inadmissible heuristics are often quite effective (especially when you have no choice)

8-Puzzle I

- Number of tiles misplaced?
- Why is it admissible?

Start State

Goal State

- $\mathrm{h}(\mathrm{start})=8$
- This is a relaxedproblem heuristic

	Average nodes expanded when		
optimal path has length...			

8-Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any one direction at any time?
- Total Manhattan

Start State

Goal State distance

- Why admissible?
- $\mathrm{h}(\mathrm{start})=$
$3+1+2+\ldots$
$=18$

	Average nodes expanded when optimal path has length...		
	$\ldots 4$ steps	$\ldots 8$ steps	$\ldots 12$ steps
TILES	13	39	227
MAN- HATTAN	12	25	73

8-Puzzle III

- How about using the actual cost as a heuristic?
- Would it be admissible?
- Would we save on nodes?
- What's wrong with it?
- With A^{*}, trade-off between quality of estimate and work per node!

Trivial Heuristics, Dominance

- Dominance:

$$
\forall n: h_{a}(n) \geq h_{c}(n)
$$

- Heuristics form a semi-lattice:
- Max of admissible heuristics is admissible

$$
h(n)=\max \left(h_{a}(n), h_{b}(n)\right)
$$

- Trivial heuristics
- Bottom of lattice is the zero heuristic (what
 does this give us?)
- Top of lattice is the exact heuristic

Course Scheduling

- From the university's perspective:
- Set of courses $\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots \mathrm{c}_{\mathrm{n}}\right\}$
- Set of room / times $\left\{r_{1}, r_{2}, \ldots r_{n}\right\}$
- Each pairing $\left(c_{k}, r_{m}\right)$ has a cost $w_{k m}$
- What's the best assignment of courses to rooms?
- States: list of pairings
- Actions: add a legal pairing
- Costs: cost of the new pairing
- Admissible heuristics?
- (Who can think of a cs170 answer to this problem?)

Other A* Applications

- Machine translation
- Statistical parsing
- Speech recognition
- Robot motion planning (next class)
- Routing problems (see homework!)
- Planning problems (see homework!)
- ...

Summary: A*

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible heuristics
- Heuristic design is key: often use relaxed problems

Local Search Methods

- Queue-based algorithms keep fallback options (backtracking)
- Local search: improve what you have until you can't make it better
- Generally much more efficient (but incomplete)

Types of Problems

- Planning problems:
- We want a path to a solution (examples?)
- Usually want an optimal path
- Incremental formulations

- Identification problems:
- We actually just want to know what the goal is (examples?)
- Usually want an optimal goal
- Complete-state formulations

- Iterative improvement algorithms

Example: N-Queens

$h=5$

$h=2$

$h=0$

- Start wherever, move queens to reduce conflicts
- Almost always solves large n-queens nearly instantly
- How is this different from best-first search?

Hill Climbing

- Simple, general idea:
- Start wherever
- Always choose the best neighbor
- If no neighbors have better scores than current, quit
- Why can this be a terrible idea?
- Complete?
- Optimal?
- What's good about it?

Hill Climbing Diagram

- Random restarts?
- Random sideways steps?

Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
- But make them rarer as time goes on
function Simulated-Annealing(problem, schedule) returns a solution state inputs: problem, a problem
schedule, a mapping from time to "temperature"
local variables: current, a node
next, a node
T, a "temperature" controlling prob. of downward steps
current \leftarrow Make-Node(Initial-State[problem])
for $t \leftarrow 1$ to ∞ do
$T \leftarrow$ schedule $[t]$
if $T=0$ then return current
next \leftarrow a randomly selected successor of current
$\Delta E \leftarrow \operatorname{ValUE}[$ next] - Value [current]
if $\Delta E>0$ then current \leftarrow next
else current \leftarrow next only with probability $e^{\Delta E / T}$

Simulated Annealing

- Theoretical guarantee:
- Stationary distribution: $p(x) \propto e^{\frac{e(x)}{k T}}$
- If T decreased slowly enough, will converge to optimal state!
- Is this an interesting guarantee?
- Sounds like magic, but reality is reality:
- The more downhill steps you need to escape, the less likely you are to every make them all in a row
- People think hard about ridge operators which let you jump around the space in better ways

Beam Search

- Like greedy search, but keep K states at all times:

Greedy Search

Beam Search

- Variables: beam size, encourage diversity?
- The best choice in MANY practical settings
- Complete? Optimal?
- Why do we still need optimal methods?

Genetic Algorithms

Fitness Selection Pairs Cross-Over Mutation

- Genetic algorithms use a natural selection metaphor
- Like beam search (selection), but also have pairwise crossover operators, with optional mutation
- Probably the most misunderstood, misapplied (and even maligned) technique around!

Example: N -Queens

- Why does crossover make sense here?
- When wouldn't it make sense?
- What would mutation be?
- What would a good fitness function be?

Continuous Problems

- Placing airports in Romania
- States: $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{x}_{3}, \mathrm{y}_{3}\right)$
- Cost: sum of squared distances to closest city

Gradient Methods

- How to deal with continous (therefore infinite) state spaces?
- Discretization: bucket ranges of values
- E.g. force integral coordinates
- Continuous optimization
- E.g. gradient ascent
$\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial y_{1}}, \frac{\partial f}{\partial x_{2}}, \frac{\partial f}{\partial y_{2}}, \frac{\partial f}{\partial x_{3}}, \frac{\partial f}{\partial y_{3}}\right)$
$x \leftarrow x+\alpha \nabla f(x)$
- More on this next class...

