CS 188: Artificial Intelligence
Spring 2006

Lecture 4: A* Search (and Friends)
1/26/2006

Dan Klein — UC Berkeley

Many slides from either Stuart Russell or Andrew Moore

Today

= A* Search

= Heuristic Design

= | ocal Search

Problem Graphs vs Search Trees

Each NODE in in the
search tree is an
entire PATH in the
problem graph.

S
-
e p
/dN PN I
We almost always b c e h r q
construct both on | [N N
demand — and we a a h r p q f
construct as little N | N
as possible. f q c G
P RN [
c a
q ‘ G
a

Uniform Cost Problems

= Remember: explores
increasing cost contours

= The good: UCS is
complete and optimal!

= The bad:

= Explores options in every
“direction”

= No information about goal
location Goal

Best-First Search

Best-First Search

= A common case:

= Best-first takes you straight
to the (wrong) goal

= Worst-case: like a badly-
guided DFS in the worst
case
= Can explore everything
= Can get stuck in loops if no
cycle checking

= Like DFS in completeness
(finite states w/ cycle
checking)

Combining Best-First and UCS

= Uniform-cost orders by path cost, or backward cost g(n)
= Best-first orders by goal proximity, or forward cost h(n)

T
I
=
11
w
=
1
N
=
1l
iy
=
Il
o

= What happens with each ordering?
= A* orders by the sum: f(n) = g(n) + h(n)

When should A* terminate?

= Should we stop when we enqueue a goal?

/ \
\/”

= No: only stop when we dequeue a goal

Is A* Optimal?

= What went wrong?
= Actual bad goal cost > estimated good goal cost
= We need estimates to be less than actual costs!

Admissible Heuristics

= A heuristic is admissible (optimistic) if:
h(n) < h*(n)

where A*(n) is the true cost to a nearest goal
= E.g. Euclidean distance on a map problem

= Coming up with admissible heuristics is most of
what'’s involved in using A* in practice.

Optimality of A*: Blocklng

This proof assumed
= Proof: |tree search! Where? g0
= What can go wrong?
= We'd have to have to pop
a suboptimal goal off the
fringe queue G
= Imagine a suboptimal
goal G’ is on the queue

= Consider any < oG
unexpanded (fringe) f(n) < g(/)
node n on a shortest path g(@) < g(GH
to optimal G

9(G") = J(&")
fn) < F(G)

= n will be popped before G

Optimality of A*: Contours

= Consider what A* does:
= Expands nodes in increasing total f value (f-contours)

= Optimal goals have lower f value, so get expanded
first

af .

gL e,

Holds for graph search as ¥ 9 v
well, but we made a different 1%
assumption. What? se

Consistency

Wait, how do we know we expand in increasing f value?

Couldn’t we pop some node n, and find its child n’ to
have higher f value?

YES: h=0 h=8
3 -

\\}

g=10 = —

~7 N -
h=10
What do we need to do to fix this?
Consistency: h(n) < e(n, a,n") + h(n')

Real cost always exceeds reduction in heuristic

UCS vs A* Contours

Uniform-cost expanded
in all directions

Goal

A* expands mainly
toward the goal, but
does hedge its bets to
ensure optimality

@Goal

Properties of A*

Admissible Heuristics

Algorithm Complete |Optimal |Time Space
UCS = BFS* Y Y O(s bo)* O(b%)*
A* Y Y O(a b?) O(b?)

*Assume all costs are 1

Uniform @st A*

. b
b atiers {
s tiers

Assume one goal, non-goals have h(n) = g*(G) - a

Most of the work is in coming up with
admissible heuristics

Good news: usually admissible heuristics
are also consistent

More good news: inadmissible heuristics
are often quite effective (especially when
you have no choice)

8-Puzzle |

Number of tiles =
misplaced? %L%
ogn

Start State

Why is it admissible?

8-Puzzle Il

Average nodes expanded when

h(start) = 8 optimal path has length...

...4 steps | ...8 steps | ...12 steps

This is a relaxeé

L 6
problem heuristic ID Lz 6,300 EEEE

TILES |13 39 227

What if we had an W2 s
easier 8-puzzle where g;l!
any tile could slide any E E

one direction at any
time? |‘_ l_ D

Total Manhattan Start State
distance
Why admissible? Average nodes expanded when
optimal path has length...
h(start) = ...4 steps | ...8 steps | ...12 steps
3+1+2+.. |TLES |13 39 227

=18 MAN- 12 25 73
HATTAN

8-Puzzle Il

Trivial Heuristics, Dominance

= How about using the actual cost as a

heuristic?

= Would it be admissible?

= Would we save on nodes?
= What's wrong with it?

= With A*, trade-off between quality of
estimate and work per node!

= Dominance:

Course Scheduling

exact
Vn : hg(n) > he(n) I
maa(ha, hy)
= Heuristics form a semi-lattice:
= Max of admissible heuristics is admissible h h
a b
h(n) = maz(ha(n), hy(n)) |
he
= Trivial heuristics AN
= Bottom of lattice is the zero heuristic (what Zero
does this give us?)
= Top of lattice is the exact heuristic
* . .
Other A* Applications

= From the university’s perspective:
= Set of courses {c,, C,, ... C,}
= Set of room/times {ry, 1y, ... 1}
= Each pairing (c,, r,,) has a cost w,,
= What's the best assignment of courses to rooms?
States: list of pairings
Actions: add a legal pairing
Costs: cost of the new pairing

Admissible heuristics?

= (Who can think of a cs170 answer to this problem?)

= Machine translation

= Statistical parsing

= Speech recognition

= Robot motion planning (next class)
= Routing problems (see homework!)
= Planning problems (see homework!)

Summary: A*

Local Search Methods

= A* uses both backward costs and
(estimates of) forward costs

= A* is optimal with admissible heuristics

= Heuristic design is key: often use relaxed

problems

= Queue-based algorithms keep fallback
options (backtracking)

= Local search: improve what you have until
you can’t make it better

= Generally much more efficient (but
incomplete)

Types of Problems

= Planning problems:
= We want a path to a solution
(examples?)
= Usually want an optimal path
= Incremental formulations

= |dentification problems:
= We actually just want to know what
the goal is (examples?)
= Usually want an optimal goal
= Complete-state formulations
= |terative improvement algorithms

Example: N-Queens

-

= Start wherever, move queens to reduce conflicts
= Almost always solves large n-queens nearly instantly

= How is this different from best-first search?

Hill Climbing

= Simple, general idea:
= Start wherever
= Always choose the best neighbor

= If no neighbors have better scores than
current, quit

= Why can this be a terrible idea?
= Complete?
= Optimal?

= What's good about it?

Hill Climbing Diagram

objective function fglobal maximum

shoulder

“flat" local

local maximum

maximum

current
state

= Random restarts?
= Random sideways steps?

state space

Simulated Annealing

= |dea: Escape local maxima by allowing downhill moves
= But make them rarer as time goes on

function 51 TED- ANNEALING(problem. schedule) returns a solution state
problem

inputs:
a mapping from time to “"temperature”

local v les: current, a node
nert, a node
T a" perature” ¢ lling prob. of d d steps
e MAKE-NODE(INITIAL-STATE[problem])
for t+— 1to x do
I+ -u.'....'-_.',[r]
if =0 then return current
nert—a randomly selected successor of current
Af e VALUE[nert] = VALUE[currend]
if AF > 0 then t

else current — nert only with probability 3 £/7

Simulated Annealing

= Theoretical guarantee: F(2)
= Stationary distribution: p(x) o< e 5T

= |f T decreased slowly enough,
will converge to optimal state!

= |s this an interesting guarantee?

= Sounds like magic, but reality is reality:

= The more downhill steps you need to escape,

likely you are to every make them all in a row

the less

= People think hard about ridge operators which let you

jump around the space in better ways

Beam Search

= Like greedy search, but keep K states at alll
times:

Greedy Search Beam Search

= Variables: beam size, encourage diversity?
= The best choice in MANY practical settings
= Complete? Optimal?

= Why do we still need optimal methods?

Genetic Algorithms

[za7asssz] 24 s [B2752410 [32728552 | [32744fb2 |
[32752411 %| 24748552 [24752432} —~{ 24752411
[24415124 W| 32752411 EZE2124 | [3k2124
[325a3213] 11 Wi ~[23a15124

Fitness Selection Pairs Cross-Over

= Genetic algorithms use a natural selection metaphor

= Like beam search (selection), but also have pairwise
crossover operators, with optional mutation

= Probably the most misunderstood, misapplied (and even
maligned) technique around!

Example: N-Queens

(W m Wy N H e m
EnEE meEkE mEE

I' I.I. I. l.l.' l. l.I.
mE o e i . ‘ @
.l EI.I E- 'l.-' .l .I.I
[Ny N W | EEE N

= Why does crossover make sense here?
= When wouldn’t it make sense?

What would mutation be?

= What would a good fitness function be?

Continuous Problems

= Placing airports in Romania
* States: (X;,Y1,Xz.Y2:X3,Y3)
= Cost: sum of squared distances to closest city

Gradient Methods

= How to deal with continous (therefore infinite)
state spaces?

= Discretization: bucket ranges of values
= E.g. gradient ascent
af of af of af of

= E.g. force integral coordinates l
V= (e e ") /

= Continuous optimization
T+ OéVf(-T) e 3

= More on this next class...
Image from vias.org

