CS 188: Artificial Intelligence Spring 2006

Lecture 5: Robot Motion Planning
 1/31/2006

Dan Klein - UC Berkeley
Many slides from either Stuart Russell or Andrew Moore

Robotics Tasks

- Motion planning (today)
- How to move from A to B
- Known obstacles
- Offline planning
- Localization (later)
- Where exactly am I?
- Known map
- Ongoing localization (why?)
- Mapping (much later)
- What's the world like?
- Exploration / discovery
- SLAM: simultaneous localization and mapping

Mobile Robots

- High-level objectives: move robots around obstacles
- Low-level: fine motor control to achieve motion
- Why is this hard?

Manipulator Robots

- High-level goals: reconfigure environment
- Low-level: move from configuration A to B (point-to-point motion)

- Why is this already hard?
- Also: compliant motion

Sensors and Effectors

- Sensors vs. Percepts
- Agent programs receive percepts
- Agent bodies have sensors
- Includes proprioceptive sensors
- Real world: sensors break,
 give noisy answers, miscalibrate, etc.
- Effectors vs. Actuators
- Agent programs have actuators (control lines)
- Agent bodies have effectors (gears and motors)
- Real-world: wheels slip, motors fail, etc.

Degrees of Freedom

- The degrees of freedom are the numbers required to specify a robot's configuration
- Positional DOFs:
- (x, y, z) of free-flying robot
- direction robot is facing
- Effector DOFs
- Arm angle
- Wing position
- Static state: robot shape and position

2 DOFs

- Dynamic state: derivatives of static DOFs (why have these?)

Question: How many DOFs for a polyhedron free-flying in 3D space?

Example

- How many DOFs?
- What are the natural coordinates for specifying the robot's configuration?
- These are the configuration space coordinates
- What are the natural coordinates for specifying the effector tip's position?
- These are the work space coordinates

Example

- How many DOFs?
- How does this compare to your arm?
- How many are required for arbitrary positioning of end-effector?

Holonomicity

- Holonomic robots control all their DOFs (e.g. manipulator arms)
- Easier to control

- Harder to build
- Non-holonomic robots do not directly control all DOFs (e.g. a car)

Configuration Space

- Workspace:
- The world's (x, y) system
- Obstacles specified here
- Configuration space
- The robot's state
- Planning happens here

Kinematics

- Kinematics
- The mapping from configurations to workspace coordinates
- Generally involves some trigonometry
- Usually pretty easy
- Inverse Kinematics
- The inverse: effector positions to configurations

- Usually non-unique (why?)

$$
\begin{aligned}
& x=r \cos (\alpha) \\
& y=r \sin (\alpha)
\end{aligned}
$$

Forward kinematics

Configuration Space

- Configuration space
- Just a coordinate system
- Not all points are reachable / legal
- Legal configurations:
- No collisions
- No self-intersection

Obstacles in C-Space

- What / where are the obstacles?
- Remaining space is free space

More Obstacles

Topology

- You very quickly get into issues of topology:
- Point robot in 3D: R^{3}
- Directional robot with fixed
 position in 3D: SO(3)
- Two rotational-jointed robot in 2D: $\mathrm{S}_{1} \times \mathrm{S}_{1}$
- For the present purposes, we'll basically ignore these issues
- In practice, you have to deal with it properly

Example: Rotation

Example: A Less Simple Arm

Summary

- Degrees of freedom
- Legal robot configurations form configuration space
- Obstacles have complex images in cspace

Motion as Search

- Motion planning as path-finding problem
- Problem: configuration space is continuous
- Problem: under-constrained motion
- Problem: configuration space can be complex

Decomposition Methods

- Break c-space into discrete regions
- Solve as a discrete problem

Exact Decomposition?

- With polygon obstacles: decompose exactly
- Problems?
- Doesn't scale at all
- Doesn't work with complex, curved obstacles

Approximate Decomposition

- Break c-space into a grid
- Search (A*, etc)
- What can go wrong?
- If no path found, can subdivide and repeat
- Problems?
- Still scales poorly
- Incomplete*

- Wiggly paths

Hierarchical Decomposition

- Actually used in practical systems
- But:
- Not optimal
- Not
 complete
- Still hopeless above a small number of dimensions

Skeletonization Methods

- Decomposition methods turn configuration space into a grid

- Skeletonization methods turn it into a set of points, with preset linear path between them

Visibility Graphs

- Shortest paths:
- No obstacles: straight line
- Otherwise: will go from vertex to vertex
- Fairly obvious, but somewhat awkward to prove
- Visibility methods:
- All free vertex-to-vertex lines (visibility graph)
- Search using, e.g. A*
- Can be done in $O\left(n^{3}\right)$ easily, $\mathrm{O}\left(\mathrm{n}^{2} \log (\mathrm{n})\right)$ less easily
- Problems?

- Bang, screech!
- Not robust to control errors
- Wrong kind of optimality?

Voronoi Decomposition

- Voronoi regions: points colored by closest obstacle

- Voronoi diagram: borders between regions
- Can be calculated efficiently for points (and polygons) in 2D
- In higher dimensions, some approximation methods

Voronoi Decomposition

- Algorithm:
- Compute the Voronoi diagram of the configuration space
- Compute shortest path (line) from start to closest point on Voronoi diagram
- Compute shortest path (line) from goal to closest point on Voronoi diagram.
- Compute shortest path from
 start to goal along Voronoi diagram
- Problems:
- Hard over 2D, hard with complex obstacles
- Can do weird things:

Probabilistic Roadmaps

- Idea: just pick random points as nodes in a visibility graph
- This gives probabilistic roadmaps
- Very successful in practice
- Lets you add points where you need them

- If insufficient points, incomplete, or weird paths

Roadmap Example

Potential Field Methods

- So far: implicit preference for short paths
- Rational agent should balance distance with risk!
- Idea: introduce cost for being close to an obstacle
- Can do this with discrete methods (how?)
- Usually most natural with continuous methods

Potential Field Methods

Define a function $u(\underset{\sim}{q})$	
$u:$ Configurations $\rightarrow \mathfrak{R}$	SIMPLE MOTION
Such that	PLANNER:
$u \rightarrow$ huge as you move towards an obstacle	
$u \rightarrow$ small as you move towards the goal	

Write $\quad d_{g}(\underset{\sim}{q})=$ distance from $\underset{\sim}{q}$ to $\underset{\sim}{q}$ goal
$d_{i}(\underset{\sim}{q})=$ distance from $\underset{\sim}{q}$ to nearest obstacle

One definition of $u: u(q)=d_{i}(q)-d_{g}(q)$
Preferred definition : $u(q)=\frac{1}{2} \sum\left(d_{g}(q)\right)^{2}+\frac{1}{2} \eta \frac{1}{d_{i}(q)^{2}}$

Local Search Methods

- Queue-based algorithms keep fallback options (backtracking)
- Local search: improve what you have until you can't make it better
- Generally much more efficient (but incomplete)

Gradient Methods

- How to deal with continous (therefore infinite) state spaces?
- Discretization: bucket ranges of values
- E.g. force integral coordinates
- Continuous optimization
- E.g. gradient ascent (or descent)

$$
\begin{aligned}
& \nabla f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial y_{1}}, \frac{\partial f}{\partial x_{2}}, \frac{\partial f}{\partial y_{2}}, \frac{\partial f}{\partial x_{3}}, \frac{\partial f}{\partial y_{3}}\right) \\
& x \leftarrow x+\alpha \nabla f(x)
\end{aligned}
$$

Hill Climbing

- Simple, general idea:
- Start wherever
- Always choose the best neighbor
- If no neighbors have better scores than current, quit
- Why can this be a terrible idea?
- Complete?
- Optimal?
- What's good about it?

Hill Climbing Diagram

- Random restarts?
- Random sideways steps?

