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Robotics Tasks

= Motion planning (today)
= How to move from Ato B
= Known obstacles
= Offline planning

= Localization (later)
= Where exactly am I? .
= Known map = ng
= Ongoing localization (why?)

= Mapping (much later)
= What's the world like?
= Exploration / discovery
= SLAM: simultaneous localization and
mapping




Mobile Robots

High-level objectives: move
robots around obstacles

Low-level: fine motor control to
achieve motion

Why is this hard?
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Manipulator Robots

High-level goals: reconfigure
environment

Low-level: move from configuration
A to B (point-to-point motion)
= Why is this already hard?

Also: compliant motion




Sensors and Effectors

= Sensors vs. Percepts

= Agent programs receive
percepts

= Agent bodies have sensors

= Includes proprioceptive
sensors

= Real world: sensors break,
give noisy answers,
miscalibrate, etc.

= Effectors vs. Actuators

= Agent programs have
actuators (control lines)

= Agent bodies have effectors
(gears and motors)

= Real-world: wheels slip,
motors falil, etc.

.

Degrees of Freedom

= The degrees of freedom are the

configuration

numbers required to specify a robot’s ﬁ D DD

= Positional DOFs:
= (X,Y, 2) of free-flying robot
= direction robot is facing
= Effector DOFs
= Arm angle
= Wing position

= Static state: robot shape and position
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3 DOFs

= Dynamic state: derivatives of static

DOFs (why have these?)

Question: How many
DOFs for a polyhedron
free-flying in 3D space?




Example

= How many DOFs?

= What are the natural
coordinates for specifying the
robot’s configuration?

= These are the configuration
space coordinates

= What are the natural
coordinates for specifying the
effector tip’s position?

= These are the work space
coordinates
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= How many DOFs?
= How does this compare to your arm?

= How many are required for arbitrary positioning of
end-effector?




Holonomicity

= Holonomic robots control — P . &R
all their DOFs (e.qg. [ /L@ﬂ h;jn\
manipulator arms) Y L. ¢

= Easier to control j_i

= Harder to build

= Non-holonomic robots do
not directly control all

DOFs (e.g. a car) = .y &
pV

= Workspace:
= The world’s (X, y) system
= Obstacles specified here

= Configuration space
= The robot’s state
= Planning happens here
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Kinematics

= Kinematics r

= The mapping from
configurations to workspace
coordinates a

» Generally involves some
trigonometry

= Usually pretty easy
x = rcos(a)

. Inversg Kinematics y = rsin(a)
» The inverse: effector
positions to configurations Forward kinematics

= Usually non-unique (why?)

Configuration Space

re[1,4]
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= Configuration space
= Just a coordinate system

= Not all points are
reachable / legal

= Legal configurations:
= No collisions
= No self-intersection




Obstacles in C-Space

= What / where are the obstacles?
= Remaining space is free space
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Topology

= You very quickly get into

iIssues of topology: o
= Point robot in 3D: R3
= Directional robot with fixed > 5 _

position in 3D: SO(3)
= Two rotational-jointed robot in
2D: S;xS;
= For the present purposes, we’ll
basically ignore these issues : .
* |n practice, you have to deal ‘]
with it properly ‘

Example: 2D Polygons

Workspace Configuration Space
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Example: Rotation
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Example: A Less Simple Arm




Summary

= Degrees of freedom

= Legal robot configurations form
configuration space

= Obstacles have complex images in c-
space

Motion as Search

= Motion planning as path-finding problem
= Problem: configuration space is continuous
= Problem: under-constrained motion
* Problem: configuration space can be complex

Why are there two
paths from 1 to 27?
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Decomposition Methods

= Break c-space into discrete regions
= Solve as a discrete problem

Exact Decomposition?

= With polygon obstacles: decompose exactly

= Problems?
= Doesn’t scale at all
= Doesn’t work with complex, curved obstacles

11



Approximate Decomposition

= Break c-space into
a grid
= Search (A*, etc)
= What can go wrong?
= If no path found, can
subdivide and
repeat
* Problems?
= Still scales poorly
= Incomplete*
= Wiggly paths

Hierarchical

Decomposition

= Actually used in practical

systems

= But:
= Not optimal
= Not
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complete

= Still

hopeless

above a
small
number of
dimensions

12



Skeletonization Methods

= Decomposition methods
turn configuration space
into a grid

= Skeletonization methods
turn it into a set of points,
with preset linear path
between them

Visibility Graphs

= Shortest paths:
= No obstacles: straight line

= Otherwise: will go from
vertex to vertex

= Fairly obvious, but
somewhat awkward to prove
= Visibility methods:
= All free vertex-to-vertex lines
(visibility graph)
= Search using, e.g. A*

= Can be done in O(n?) easily,
0O(n?log(n)) less easily

= Problems?
= Bang, screech!
= Not robust to control errors
= Wrong kind of optimality?

qgoal
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Voronoi Decomposition

= \Voronoi regions: points colored by closest obstacle

G B

= Voronoi diagram: borders between regions
= Can be calculated efficiently for points (and polygons) in 2D
= In higher dimensions, some approximation methods

Voronoi Decomposition

= Algorithm:

= Compute the Voronoi diagram
of the configuration space

= Compute shortest path (line)
from start to closest point on
Voronoi diagram

= Compute shortest path (line)
from goal to closest point on
Voronoi diagram.

= Compute shortest path from
start to goal along Voronoi
diagram

Problems:

= Hard over 2D, hard with
complex obstacles

= Can do weird things:
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Probabilistic Roadmaps

» |dea: just pick random points
as nodes in a visibility graph

» This gives probabilistic
roadmaps
= Very successful in practice

= Lets you add points where you
need them

= If insufficient points, incomplete,
or weird paths

Roadmap Example
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Potential Field Methods

So far: implicit preference for short paths

Rational agent should balance distance
with risk!

Idea: introduce cost for being close to an
obstacle

Can do this with discrete methods (how?)

Usually most natural with continuous
methods

Potential Fields

= Cost for:
= Being far from goal

= Being near an
obstacle

= Go downbhill

= What could go
wrong?
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Potential Field Methods

Define a function u[q) SIMPLE MOTION

u: Configurations — R PLANNER:

Such that Gradient descent on u
u —huge asyou move towards an obstacle
u —small as you move towards the goal

Write dg(gj =distance from (31 to q goal

d (q) =distance from q to nearest obstacle

One definition of u: u(q)=d;(q)-d,(q)

o 1 1 1
Preferred definition : =-2.\d 2T (G
referred definition : u(q) 22( Q(Q))2+2ndi(q)2

Local Search Methods

= Queue-based algorithms keep fallback
options (backtracking)

= Local search: improve what you have until
you can’'t make it better

= Generally much more efficient (but
incomplete)
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Gradient Methods

= How to deal with continous (therefore infinite)
state spaces?

= Discretization: bucket ranges of values
= E.g. force integral coordinates

= Continuous optimization i
= E.g. gradient ascent (or descent) / l
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Hill Climbing

= Simple, general idea:
= Start wherever
= Always choose the best neighbor

= |[f no neighbors have better scores than
current, quit

= Why can this be a terrible idea?
= Complete?
= Optimal?

= What's good about it?
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Hill Climbing Diagram

objective function lobal maximum

shoulder

local maximum
"flat" local maximum

»state space
current

state
= Random restarts?

= Random sideways steps?




