
1

CS 188: Artificial Intelligence
Spring 2006

Lecture 5: Robot Motion Planning
1/31/2006

Dan Klein – UC Berkeley

Many slides from either Stuart Russell or Andrew Moore 

Robotics Tasks
Motion planning (today)

How to move from A to B
Known obstacles
Offline planning

Localization (later)
Where exactly am I?
Known map
Ongoing localization (why?)

Mapping (much later)
What’s the world like?
Exploration / discovery
SLAM: simultaneous localization and 
mapping

Mobile Robots

High-level objectives: move 
robots around obstacles
Low-level: fine motor control to 
achieve motion
Why is this hard?

Start 
Configuration

Immovable 
Obstacles

Goal Configuration

Manipulator Robots

High-level goals: reconfigure 
environment

Low-level: move from configuration 
A to B (point-to-point motion)

Why is this already hard?

Also: compliant motion

Sensors and Effectors
Sensors vs. Percepts

Agent programs receive 
percepts
Agent bodies have sensors
Includes proprioceptive
sensors
Real world: sensors break, 
give noisy answers, 
miscalibrate, etc.

Effectors vs. Actuators
Agent programs have 
actuators (control lines)
Agent bodies have effectors 
(gears and motors)
Real-world: wheels slip, 
motors fail, etc.

Degrees of Freedom

2 DOFs

3 DOFs

Question: How many 
DOFs for a polyhedron 
free-flying in 3D space?

The degrees of freedom are the 
numbers required to specify a robot’s 
configuration
Positional DOFs:

(x, y, z) of free-flying robot
direction robot is facing

Effector DOFs
Arm angle
Wing position

Static state: robot shape and position
Dynamic state: derivatives of static 
DOFs (why have these?)
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Example

How many DOFs?
What are the natural 
coordinates for specifying the 
robot’s configuration?
These are the configuration 
space coordinates
What are the natural 
coordinates for specifying the 
effector tip’s position?
These are the work space
coordinates

Example

How many DOFs?
How does this compare to your arm?
How many are required for arbitrary positioning of 
end-effector?

Holonomicity

Holonomic robots control 
all their DOFs (e.g. 
manipulator arms)

Easier to control
Harder to build

Non- holonomic robots do 
not directly control all 
DOFs (e.g. a car)

Configuration Space

Workspace:
The world’s (x, y) system
Obstacles specified here

Configuration space
The robot’s state
Planning happens here

Kinematics
Kinematics

The mapping from 
configurations to workspace 
coordinates
Generally involves some 
trigonometry
Usually pretty easy

Inverse Kinematics
The inverse: effector
positions to configurations
Usually non-unique (why?)

Forward kinematics

Configuration Space

Configuration space
Just a coordinate system
Not all points are 
reachable / legal

Legal configurations:
No collisions
No self-intersection
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Obstacles in C-Space

What / where are the obstacles?
Remaining space is free space

More Obstacles

Topology

You very quickly get into 
issues of topology:

Point robot in 3D: R3

Directional robot with fixed 
position in 3D: SO(3)
Two rotational-jointed robot in 
2D: S1xS1

For the present purposes, we’ll 
basically ignore these issues
In practice, you have to deal 
with it properly

Example: 2D Polygons

Workspace Configuration Space

Example: Rotation Example: A Less Simple Arm
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Summary

Degrees of freedom

Legal robot configurations form 
configuration space

Obstacles have complex images in c-
space

Motion as Search

Motion planning as path- finding problem
Problem: configuration space is continuous 
Problem: under-constrained motion
Problem: configuration space can be complex

Why are there two 
paths from 1 to 2?

Decomposition Methods

Break c-space into discrete regions
Solve as a discrete problem

Exact Decomposition?

With polygon obstacles: decompose exactly
Problems?

Doesn’t scale at all
Doesn’t work with complex, curved obstacles

Approximate Decomposition

Break c- space into 
a grid

Search (A*, etc)
What can go wrong?
If no path found, can 
subdivide and 
repeat

Problems?
Still scales poorly
Incomplete*
Wiggly paths

S

G

Hierarchical Decomposition

But:
Not optimal
Not 
complete
Still 
hopeless 
above a 
small 
number of 
dimensions

Actually used in practical 
systems
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Skeletonization Methods

Decomposition methods 
turn configuration space 
into a grid

Skeletonization methods 
turn it into a set of points, 
with preset linear path 
between them

Visibility Graphs
Shortest paths:

No obstacles: straight line
Otherwise: will go from 
vertex to vertex
Fairly obvious, but 
somewhat awkward to prove

Visibility methods:
All free vertex-to-vertex lines 
(visibility graph)
Search using, e.g. A*
Can be done in O(n3) easily, 
O(n2log(n)) less easily

Problems?
Bang, screech!
Not robust to control errors
Wrong kind of optimality?

qstart

qgoal

qstart

Voronoi Decomposition

Voronoi regions: points colored by closest obstacle

Voronoi diagram: borders between regions
Can be calculated efficiently for points (and polygons) in 2D
In higher dimensions, some approximation methods

R

G B

Y

Voronoi Decomposition
Algorithm:

Compute the Voronoi diagram 
of the configuration space
Compute shortest path (line) 
from start to closest point on 
Voronoi diagram
Compute shortest path (line) 
from goal to closest point on 
Voronoi diagram.
Compute shortest path from 
start to goal along Voronoi
diagram

Problems:
Hard over 2D, hard with 
complex obstacles
Can do weird things:

Probabilistic Roadmaps

Idea: just pick random points 
as nodes in a visibility graph

This gives probabilistic 
roadmaps

Very successful in practice
Lets you add points where you 
need them
If insufficient points, incomplete, 
or weird paths

Roadmap Example
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Potential Field Methods

So far: implicit preference for short paths
Rational agent should balance distance 
with risk!
Idea: introduce cost for being close to an 
obstacle
Can do this with discrete methods (how?)
Usually most natural with continuous 
methods

Potential Fields

Cost for:
Being far from goal
Being near an 
obstacle

Go downhill
What could go 
wrong?

Potential Field Methods
SIMPLE MOTION 
PLANNER:

Gradient descent on u
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Local Search Methods

Queue-based algorithms keep fallback 
options (backtracking)

Local search: improve what you have until 
you can’t make it better

Generally much more efficient (but 
incomplete)

Gradient Methods

How to deal with continous (therefore infinite) 
state spaces?
Discretization: bucket ranges of values 

E.g. force integral coordinates
Continuous optimization

E.g. gradient ascent (or descent)

Image from vias.org

Hill Climbing

Simple, general idea:
Start wherever
Always choose the best neighbor
If no neighbors have better scores than 
current, quit

Why can this be a terrible idea?
Complete?
Optimal?

What’s good about it?
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Hill Climbing Diagram

Random restarts?
Random sideways steps?


