
1

CS 188: Artificial Intelligence
Spring 2006

Lecture 5: Robot Motion Planning
1/31/2006

Dan Klein – UC Berkeley

Many slides from either Stuart Russell or Andrew Moore

Robotics Tasks
Motion planning (today)

How to move from A to B
Known obstacles
Offline planning

Localization (later)
Where exactly am I?
Known map
Ongoing localization (why?)

Mapping (much later)
What’s the world like?
Exploration / discovery
SLAM: simultaneous localization and
mapping

Mobile Robots

High-level objectives: move
robots around obstacles
Low-level: fine motor control to
achieve motion
Why is this hard?

Start
Configuration

Immovable
Obstacles

Goal Configuration

Manipulator Robots

High-level goals: reconfigure
environment

Low-level: move from configuration
A to B (point-to-point motion)

Why is this already hard?

Also: compliant motion

Sensors and Effectors
Sensors vs. Percepts

Agent programs receive
percepts
Agent bodies have sensors
Includes proprioceptive
sensors
Real world: sensors break,
give noisy answers,
miscalibrate, etc.

Effectors vs. Actuators
Agent programs have
actuators (control lines)
Agent bodies have effectors
(gears and motors)
Real-world: wheels slip,
motors fail, etc.

Degrees of Freedom

2 DOFs

3 DOFs

Question: How many
DOFs for a polyhedron
free-flying in 3D space?

The degrees of freedom are the
numbers required to specify a robot’s
configuration
Positional DOFs:

(x, y, z) of free-flying robot
direction robot is facing

Effector DOFs
Arm angle
Wing position

Static state: robot shape and position
Dynamic state: derivatives of static
DOFs (why have these?)

2

Example

How many DOFs?
What are the natural
coordinates for specifying the
robot’s configuration?
These are the configuration
space coordinates
What are the natural
coordinates for specifying the
effector tip’s position?
These are the work space
coordinates

Example

How many DOFs?
How does this compare to your arm?
How many are required for arbitrary positioning of
end-effector?

Holonomicity

Holonomic robots control
all their DOFs (e.g.
manipulator arms)

Easier to control
Harder to build

Non- holonomic robots do
not directly control all
DOFs (e.g. a car)

Configuration Space

Workspace:
The world’s (x, y) system
Obstacles specified here

Configuration space
The robot’s state
Planning happens here

Kinematics
Kinematics

The mapping from
configurations to workspace
coordinates
Generally involves some
trigonometry
Usually pretty easy

Inverse Kinematics
The inverse: effector
positions to configurations
Usually non-unique (why?)

Forward kinematics

Configuration Space

Configuration space
Just a coordinate system
Not all points are
reachable / legal

Legal configurations:
No collisions
No self-intersection

3

Obstacles in C-Space

What / where are the obstacles?
Remaining space is free space

More Obstacles

Topology

You very quickly get into
issues of topology:

Point robot in 3D: R3

Directional robot with fixed
position in 3D: SO(3)
Two rotational-jointed robot in
2D: S1xS1

For the present purposes, we’ll
basically ignore these issues
In practice, you have to deal
with it properly

Example: 2D Polygons

Workspace Configuration Space

Example: Rotation Example: A Less Simple Arm

4

Summary

Degrees of freedom

Legal robot configurations form
configuration space

Obstacles have complex images in c-
space

Motion as Search

Motion planning as path- finding problem
Problem: configuration space is continuous
Problem: under-constrained motion
Problem: configuration space can be complex

Why are there two
paths from 1 to 2?

Decomposition Methods

Break c-space into discrete regions
Solve as a discrete problem

Exact Decomposition?

With polygon obstacles: decompose exactly
Problems?

Doesn’t scale at all
Doesn’t work with complex, curved obstacles

Approximate Decomposition

Break c- space into
a grid

Search (A*, etc)
What can go wrong?
If no path found, can
subdivide and
repeat

Problems?
Still scales poorly
Incomplete*
Wiggly paths

S

G

Hierarchical Decomposition

But:
Not optimal
Not
complete
Still
hopeless
above a
small
number of
dimensions

Actually used in practical
systems

5

Skeletonization Methods

Decomposition methods
turn configuration space
into a grid

Skeletonization methods
turn it into a set of points,
with preset linear path
between them

Visibility Graphs
Shortest paths:

No obstacles: straight line
Otherwise: will go from
vertex to vertex
Fairly obvious, but
somewhat awkward to prove

Visibility methods:
All free vertex-to-vertex lines
(visibility graph)
Search using, e.g. A*
Can be done in O(n3) easily,
O(n2log(n)) less easily

Problems?
Bang, screech!
Not robust to control errors
Wrong kind of optimality?

qstart

qgoal

qstart

Voronoi Decomposition

Voronoi regions: points colored by closest obstacle

Voronoi diagram: borders between regions
Can be calculated efficiently for points (and polygons) in 2D
In higher dimensions, some approximation methods

R

G B

Y

Voronoi Decomposition
Algorithm:

Compute the Voronoi diagram
of the configuration space
Compute shortest path (line)
from start to closest point on
Voronoi diagram
Compute shortest path (line)
from goal to closest point on
Voronoi diagram.
Compute shortest path from
start to goal along Voronoi
diagram

Problems:
Hard over 2D, hard with
complex obstacles
Can do weird things:

Probabilistic Roadmaps

Idea: just pick random points
as nodes in a visibility graph

This gives probabilistic
roadmaps

Very successful in practice
Lets you add points where you
need them
If insufficient points, incomplete,
or weird paths

Roadmap Example

6

Potential Field Methods

So far: implicit preference for short paths
Rational agent should balance distance
with risk!
Idea: introduce cost for being close to an
obstacle
Can do this with discrete methods (how?)
Usually most natural with continuous
methods

Potential Fields

Cost for:
Being far from goal
Being near an
obstacle

Go downhill
What could go
wrong?

Potential Field Methods
SIMPLE MOTION
PLANNER:

Gradient descent on u

() () ()

() ()()
()∑ +=

−=

=⎟
⎠
⎞

⎜
⎝
⎛

=⎟
⎠
⎞

⎜
⎝
⎛

→
→

ℜ→

⎟
⎠
⎞

⎜
⎝
⎛

2
2

~~

~~~

~

1
2
1

2
1   :definition Preferred

   : of definition One

obstaclenearest   to from distance              

goal   to from distance      Write

goal  the towardsmoveyou  as   small    
obstaclean   towardsmoveyou  as    huge    

Such that
ionsConfigurat:    

   function   a Define

qd
qdqu

qdqdquu

qqd

qqqd

u
u

u

qu

i
g

gi

i

g

η

Local Search Methods

Queue-based algorithms keep fallback 
options (backtracking)

Local search: improve what you have until 
you can’t make it better

Generally much more efficient (but 
incomplete)

Gradient Methods

How to deal with continous (therefore infinite) 
state spaces?
Discretization: bucket ranges of values 

E.g. force integral coordinates
Continuous optimization

E.g. gradient ascent (or descent)

Image from vias.org

Hill Climbing

Simple, general idea:
Start wherever
Always choose the best neighbor
If no neighbors have better scores than 
current, quit

Why can this be a terrible idea?
Complete?
Optimal?

What’s good about it?



7

Hill Climbing Diagram

Random restarts?
Random sideways steps?


