
1

CS 188: Artificial Intelligence
Spring 2006

Lecture 6: CSPs
2/2/2006

Dan Klein – UC Berkeley

Many slides from either Stuart Russell or Andrew Moore 

Constraint Satisfaction Problems

Standard search problems:
State is a “black box”: any old data structure
Goal test: any function over states
Successors: any map from states to sets of states

Constraint satisfaction problems (CSPs):
State is defined by variables Xi with values from a 
domain D (sometimes D depends on i)
Goal test is a set of constraints specifying 
allowable combinations of values for subsets of 
variables

Simple example of a formal representation 
language

Allows useful general-purpose algorithms with 
more power than standard search algorithms
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Example: N-Queens

Formulation 1:
Variables:
Domains:
Constraints

Example: N-Queens

Formulation 2:
Variables:

Domains:

Constraints:
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Example: Map-Coloring
Variables:

Domain:

Constraints: adjacent regions must have 
different colors

Solutions are assignments satisfying all 
constraints, e.g.:

Constraint Graphs
Binary CSP: each constraint 
relates (at most) two variables

Constraint graph: nodes are 
variables, arcs show 
constraints

General-purpose CSP 
algorithms use the graph 
structure to speed up search. 
E.g., Tasmania is an 
independent subproblem!
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Example: Cryptarithmetic

Variables:

Domains:

Constraints:

Varieties of CSPs
Discrete Variables

Finite domains size d means O(dn) complete assignments
E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)

Infinite domains (integers, strings, etc.)
E.g., job scheduling, variables are start/end times for each job
Need a constraint language, e.g., StartJob1 + 5 < StartJob3
Linear constraints solvable, nonlinear undecidable

Continuous variables
E.g., start/end times for Hubble Telescope observations
Linear constraints solvable in polynomial time by LP methods 
(see cs170 for a bit of this theory)
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Varieties of Constraints
Varieties of Constraints

Unary constraints involve a single variable (equiv. to shrinking domains):

Binary constraints involve pairs of variables:

Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

Preferences (soft constraints):
E.g., red is better than green
Often representable by a cost for each variable assignment
Gives constrained optimization problems

Real-World CSPs
Assignment problems: e.g., who teaches what class
Timetabling problems: e.g., which class is offered when 
and where?
Hardware configuration
Spreadsheets
Transportation scheduling
Factory scheduling
Floorplanning

Many real-world problems involve real-valued 
variables…
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Standard Search Formulation

Standard search formulation of CSPs (incremental)

Let's start with the straightforward, dumb approach, then 
fix it

States are defined by the values assigned so far
Initial state: the empty assignment, {}
Successor function: assign a value to an unassigned variable
Goal test: the current assignment is complete and satisfies all 
constraints

Search Methods

What does BFS do?

What does DFS do?

What’s the obvious problem here?
What’s the slightly-less-obvious problem?
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Backtracking Search
Idea 1: Only consider a single variable at each point:

Variable assignments are commutative
I.e., [WA = red then NT = green] same as [NT = green then WA = red]
Only need to consider assignments to a single variable at each step
How many leaves are there?

Idea 2: Only allow legal assignments at each point
I.e. consider only values which do not conflict previous assignmesnts

Depth-first search for CSPs with these two improvements is called 
backtracking search

Backtracking search is the basic uninformed algorithm for CSPs

Can solve n-queens for n ≈ 25

Backtracking Search

What are the choice points?
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Backtracking Example

Improving Backtracking

General-purpose ideas can give huge gains in 
speed:

Which variable should be assigned next?
In what order should its values be tried?
Can we detect inevitable failure early?
Can we take advantage of problem structure?
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Minimum Remaining Values

Minimum remaining values (MRV):
Choose the variable with the fewest legal values

Why min rather than max?
Called most constrained variable
“Fail-fast” ordering

Degree Heuristic

Tie-breaker among MRV variables
Degree heuristic:

Choose the variable with the most constraints on 
remaining variables

Why most rather than fewest constraints?
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Least Constraining Value
Given a choice of variable:

Choose the least constraining 
value
The one that rules out the fewest 
values in the remaining variables
Note that it may take some 
computation to determine this!

Why least rather than most?

Combining these heuristics 
makes 1000 queens feasible

Forward Checking
Idea: Keep track of remaining legal values for 
unassigned variables
Idea: Terminate when any variable has no legal values

WA SA
NT Q

NSW
V
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Constraint Propagation
Forward checking propagates information from assigned to 
unassigned variables, but doesn't provide early detection for all 
failures:

NT and SA cannot both be blue!
Why didn’t we detect this yet?
Constraint propagation repeatedly enforces constraints (locally)

WA SA
NT Q

NSW
V

Arc Consistency
Simplest form of propagation makes each arc consistent

X → Y is consistent iff for every value x there is some allowed y

If X loses a value, neighbors of X need to be rechecked!
Arc consistency detects failure earlier than forward checking
What’s the downside of arc consistency?
Can be run as a preprocessor or after each assignment 

WA SA
NT Q

NSW
V
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Arc Consistency

Runtime: O(n2d3), can be reduced to O(n2d2)
… but detecting all possible future problem is NP-hard – why?

Problem Structure
Tasmania and mainland are 
independent subproblems

Identifiable as connected 
components of constraint graph

Suppose each subproblem has c 
variables out of n total
Worst-case solution cost is 
O((n/c)(dc)), linear in n

E.g., n = 80, d = 2, c =20
280 = 4 billion years at 10 million 
nodes/sec
(4)(220) = 0.4 seconds at 10 million 
nodes/sec
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Tree-Structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be 
solved in O(n d2) time

Compare to general CSPs, where worst-case time is O(dn)

This property also applies to logical and probabilistic reasoning: an 
important example of the relation between syntactic restrictions and 
the complexity of reasoning.

Tree-Structured CSPs
Choose a variable as root, order
variables from root to leaves such
that every node's parent precedes
it in the ordering 

For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
For i = 1 : n, assign Xi consistently with Parent(Xi)

Runtime: O(n d2)
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Nearly Tree-Structured CSPs

Conditioning: instantiate a variable, prune its neighbors' domains

Cutset conditioning: instantiate (in all ways) a set of variables such
that the remaining constraint graph is a tree

Cutset size c gives runtime O( (dc) (n-c) d2 ), very fast for small c

Iterative Algorithms for CSPs
Hill-climbing, simulated annealing typically work with 
“complete” states, i.e., all variables assigned

To apply to CSPs:
Allow states with unsatisfied constraints
Operators reassign variable values

Variable selection: randomly select any conflicted 
variable

Value selection by min-conflicts heuristic:
Choose value that violates the fewest constraints
I.e., hillclimb with h(n) = total number of violated constraints
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Example: 4-Queens

States: 4 queens in 4 columns (44 = 256 states)
Operators: move queen in column
Goal test: no attacks
Evaluation: h(n) = number of attacks

Performance of Min-Conflicts
Given random initial state, can solve n-queens in almost constant 
time for arbitrary n with high probability (e.g., n = 10,000,000)

The same appears to be true for any randomly-generated CSP 
except in a narrow range of the ratio
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Summary
CSPs are a special kind of search problem:

States defined by values of a fixed set of variables
Goal test defined by constraints on variable values

Backtracking = depth-first search with one legal variable assigned per node

Variable ordering and value selection heuristics help significantly

Forward checking prevents assignments that guarantee later failure

Constraint propagation (e.g., arc consistency) does additional work to constrain 
values and detect inconsistencies

The constraint graph representation allows analysis of problem structure

Tree-structured CSPs can be solved in linear time

Iterative min-conflicts is usually effective in practice


