CS 188: Artificial Intelligence Spring 2006

Lecture 6: CSPs 2/2/2006

Dan Klein – UC Berkeley

Many slides from either Stuart Russell or Andrew Moore

Constraint Satisfaction Problems

- Standard search problems:
 - State is a "black box": any old data structure
 - Goal test: any function over states
 - Successors: any map from states to sets of states
- Constraint satisfaction problems (CSPs):
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Simple example of a formal representation language
- Allows useful general-purpose algorithms with more power than standard search algorithms

Example: N-Queens

- Formulation 1:
 - Variables: X_{ij}
 - Domains: {0,1}
 - Constraints

$$\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0,0), (0,1), (1,0)\}$$

$$\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0,0), (0,1), (1,0)\}$$

$$\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0,0), (0,1), (1,0)\}$$

$$\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0,0), (0,1), (1,0)\}$$

$$\sum_{i,j} X_{ij} = N$$

Example: N-Queens

- Formulation 2:
 - Variables: Q_k
 - Domains: {11,12,13,... 21,...*NN*}

Constraints:

$$\forall i, j \ (Q_i, Q_j) \in \{(11, 23), (11, 24), \ldots\}$$

orall i,j non-threatening (Q_i,Q_j)

Example: Map-Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domain: $D = \{red, green, blue\}$
- Constraints: adjacent regions must have different colors

$$WA \neq NT$$

 $(WA, NT) \in \{(red, green), (red, blue), (green, red), \ldots\}$

Solutions are assignments satisfying all constraints, e.g.:

$$\{WA = red, NT = green, Q = red, \\ NSW = green, V = red, SA = blue, T = green\}$$

Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Example: Cryptarithmetic

Variables:

F T U W R O
$$X_1$$
 X_2 X_3 + T W O

Domains:

 $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Constraints:

alldiff
$$(F, T, U, W, R, O)$$

$$O + O = R + 10 \cdot X_1$$

Varieties of CSPs

- Discrete Variables
 - Finite domains size d means $O(d^n)$ complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Need a constraint language, e.g., StartJob₁ + 5 < StartJob₃
 - Linear constraints solvable, nonlinear undecidable
- Continuous variables
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods (see cs170 for a bit of this theory)

Varieties of Constraints

- Varieties of Constraints
 - Unary constraints involve a single variable (equiv. to shrinking domains):

$$SA \neq green$$

Binary constraints involve pairs of variables:

$$SA \neq WA$$

- Higher-order constraints involve 3 or more variables:
 e.g., cryptarithmetic column constraints
- Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Spreadsheets
- Transportation scheduling
- Factory scheduling
- Floorplanning
- Many real-world problems involve real-valued variables...

Standard Search Formulation

- Standard search formulation of CSPs (incremental)
- Let's start with the straightforward, dumb approach, then fix it
- States are defined by the values assigned so far
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints

Search Methods

What does BFS do?

- What does DFS do?
- What's the obvious problem here?
- What's the slightly-less-obvious problem?

Backtracking Search

- Idea 1: Only consider a single variable at each point:
 - Variable assignments are commutative
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
 - How many leaves are there?
- Idea 2: Only allow legal assignments at each point
 - I.e. consider only values which do not conflict previous assignmeents
- Depth-first search for CSPs with these two improvements is called backtracking search
- Backtracking search is the basic uninformed algorithm for CSPs
- Can solve n-queens for n ≈ 25

Backtracking Search

```
function Backtracking-Search(csp) returns solution/failure return Recursive-Backtracking({ }, csp)  
function Recursive-Backtracking(assignment, csp) returns soln/failure if assignment is complete then return assignment var \leftarrow \text{Select-Unassigned-Variable}(\text{Variables}[csp], assignment, csp)  for each value in Order-Domain-Values(var, assignment, csp) do if value is consistent with assignment given Constraints[csp] then add {var = value} to assignment result \leftarrow Recursive-Backtracking(assignment, csp) if result \neq failure then return result remove {var = value} from assignment return failure
```

What are the choice points?

Backtracking Example

Improving Backtracking

- General-purpose ideas can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?
 - Can we take advantage of problem structure?

Minimum Remaining Values

- Minimum remaining values (MRV):
 - Choose the variable with the fewest legal values

- Why min rather than max?
- Called most constrained variable
- "Fail-fast" ordering

Degree Heuristic

- Tie-breaker among MRV variables
- Degree heuristic:
 - Choose the variable with the most constraints on remaining variables

Why most rather than fewest constraints?

Least Constraining Value

- Given a choice of variable:
 - Choose the least constraining value
 - The one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this!

- Why least rather than most?
- Combining these heuristics makes 1000 queens feasible

WA

Forward Checking Idea: Keep track of remaining legal values for unassigned variables Idea: Terminate when any variable has no legal values NSW SA

Constraint Propagation

 Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- Why didn't we detect this yet?
- Constraint propagation repeatedly enforces constraints (locally)

Arc Consistency

- Simplest form of propagation makes each arc consistent
 - X → Y is consistent iff for every value x there is some allowed y

- If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- What's the downside of arc consistency?
- Can be run as a preprocessor or after each assignment

Arc Consistency

```
function AC-3( csp) returns the CSP, possibly with reduced domains inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\} local variables: queue, a queue of arcs, initially all the arcs in csp while queue is not empty do (X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue) if \text{REMOVE-INCONSISTENT-VALUES}(X_i, X_j) then for each X_k in \text{NEIGHBORS}[X_i] do add (X_k, X_i) to queue function \text{REMOVE-INCONSISTENT-VALUES}(X_i, X_j) returns true iff succeeds removed \leftarrow false for each x in \text{DOMAIN}[X_i] do if no value y in \text{DOMAIN}[X_j] allows (x,y) to satisfy the constraint X_i \leftrightarrow X_j then delete x from \text{DOMAIN}[X_i]; removed \leftarrow true return removed
```

- Runtime: O(n²d³), can be reduced to O(n²d²)
- ... but detecting all possible future problem is NP-hard why?

Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has c variables out of n total
- Worst-case solution cost is O((n/c)(d^c)), linear in n
 - E.g., n = 80, d = 2, c = 20
 - 280 = 4 billion years at 10 million nodes/sec
 - (4)(2²⁰) = 0.4 seconds at 10 million nodes/sec

Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d²) time
 - Compare to general CSPs, where worst-case time is O(dn)
- This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.

Tree-Structured CSPs

 Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering

- For i = n : 2, apply RemoveInconsistent(Parent(X_i),X_i)
- For i = 1 : n, assign X_i consistently with Parent(X_i)
- Runtime: O(n d²)

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c

Iterative Algorithms for CSPs

- Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - Allow states with unsatisfied constraints
 - Operators reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - Choose value that violates the fewest constraints
 - I.e., hillclimb with h(n) = total number of violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns (4⁴ = 256 states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: h(n) = number of attacks

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$

Summary

- CSPs are a special kind of search problem:

 States defined by values of a fixed set of variables

 - Goal test defined by constraints on variable values
- Backtracking = depth-first search with one legal variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- The constraint graph representation allows analysis of problem structure
- Tree-structured CSPs can be solved in linear time
- Iterative min-conflicts is usually effective in practice