Today

- More CSPs
 - Applications
 - Tree Algorithms
 - Cutset Conditioning

- Local Search
Reminder: CSPs

- CSPs:
 - Variables
 - Domains
 - Constraints
 - Implicit (provide code to compute)
 - Explicit (provide a subset of the possible tuples)

- Unary Constraints
- Binary Constraints
- N-ary Constraints

Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra
- An early example of a computation posed as a CSP

- Look at all intersections
- Adjacent intersections impose constraints on each other
Waltz on Simple Scenes

- Assume all objects:
 - Have no shadows or cracks
 - Three-faced vertices
 - "General position": no junctions change with small movements of the eye.

- Then each line on image is one of the following:
 - Boundary line (edge of an object) (→) with right hand of arrow denoting "solid" and left hand denoting "space"
 - Interior convex edge (+)
 - Interior concave edge (→)

Legal Junctions

- Only certain junctions are physically possible
- How can we formulate a CSP to label an image?
- Variables: vertices
- Domains: junction labels
- Constraints: both ends of a line should have the same label
Example: Boolean Satisfiability

- Given a Boolean expression, is it satisfiable?
- Very basic problem in computer science

\[p_1 \land (p_2 \rightarrow p_3) \land ((\neg p_1 \land \neg p_3) \rightarrow \neg p_2) \land (p_1 \lor p_3) \]

- Turns out you can always express in 3-CNF

\[(p_1) \land (\neg p_2 \lor p_3) \land (p_1 \lor p_3 \lor \neg p_2) \land (p_1 \lor p_2 \lor p_3) \]

- 3-SAT: find a satisfying truth assignment

Example: 3-SAT

- Variables: \(p_1, p_2, \ldots, p_n \)
- Domains: \{true, false\}
- Constraints:

\[\begin{align*}
& p_i \lor p_j \lor p_k \\
& \neg p_i' \lor p_j' \lor p_k' \\
& \quad \vdots \\
& p_i''' \lor \neg p_j''' \lor \neg p_k'''
\end{align*} \]

Implicitly conjoined (all clauses must be satisfied)
CSPs: Queries

- Types of queries:
 - Legal assignment (last class)
 - All assignments
 - Possible values of some query variable(s) given some evidence (partial assignments)

Example: Fault Diagnosis

- Fault networks:
 - Variables?
 - Domains?
 - Constraints?

- Various ways to query, given symptoms
 - Some cause (abduction)
 - Simplest cause
 - All possible causes
 - What test is most useful?
 - Prediction: cause to effect

- We'll see this idea again with Bayes’ nets
Reminder: Consistency

- Basic solution: DFS / backtracking
 - Add a new assignment
 - Check for violations

- Forward checking:
 - Pre-filter unassigned domains after every assignment
 - Only remove values which conflict with current assignments

- Arc consistency
 - We only defined it for binary CSPs
 - Check for impossible values on all pairs of variables
 - Run (or not) after each assignment before recursing

Arc Consistency

```python
function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
local variables: queue, a queue of arcs, initially all the arcs in csp
while queue is not empty do
  (X_i, X_j) ← REMOVE-FIRST(queue)
  if REMOVE-INCONSISTENT-VALUES(X_i, X_j) then
    for each X_k in NEIGHBORS[X_j] do
      add (X_i, X_k) to queue

function REMOVE-INCONSISTENT-VALUES(X_i, X_j) returns true iff succeeds
removed ← false
for each x in DOMAIN[X_i] do
  if no value y in DOMAIN[X_j] allows (x,y) to satisfy the constraint X_i ← X_j
   then delete x from DOMAIN[X_i]; removed ← true
return removed
```
Limitations of Arc Consistency

- After running arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node’s domain has a value which meets that node’s unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.

- Higher k more expensive to compute
Strong K-Consistency

- Strong k-consistency: also k-1, k-2, ... 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
- Why?
 - Choose any assignment to any variable
 - Choose a new variable
 - By 2-consistency, there is a choice consistent with the first
 - Choose a new variable
 - By 3-consistency, there is a choice consistent with the first 2
 - ...
- Lots of middle ground between arc consistency and n-consistency! (e.g. path consistency)

Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has c variables out of n total
 - Worst-case solution cost is $O((n/c)(d^n))$, linear in n
 - E.g., $n = 80$, $d = 2$, $c = 20$
 - $2^{80} = 4$ billion years at 10 million nodes/sec
 - $(4)(2^{20}) = 0.4$ seconds at 10 million nodes/sec
Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in $O(n d^2)$ time
 - Compare to general CSPs, where worst-case time is $O(d^n)$

- This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.

Choose a variable as root, order variables from root to leaves such that every node’s parent precedes it in the ordering

- For $i = n : 2$, apply RemoveInconsistent(\text{Parent}(X_i), X_i)
- For $i = 1 : n$, assign X_i consistently with \text{Parent}(X_i)

Runtime: $O(n d^2)$ (why?)
Tree-Structured CSPs

- Why does this work?
- Claim: After each node is processed leftward, all nodes to the right can be assigned in any way consistent with their parent.
- Proof: Induction on position

![Diagram of A to F connected in a loop]

- Why doesn't this algorithm work with loops?
- Note: we'll see this basic idea again with Bayes’ nets and call it belief propagation

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors’ domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime $O\left(\left(d^c\right)\left(n-c\right)d^2\right)$, very fast for small c
Iterative Algorithms for CSPs

- Hill-climbing, simulated annealing typically work with “complete” states, i.e., all variables assigned

- To apply to CSPs:
 - Allow states with unsatisfied constraints
 - Operators *reassign* variable values

- Variable selection: randomly select any conflicted variable

- Value selection by min-conflicts heuristic:
 - Choose value that violates the fewest constraints
 - I.e., hillclimb with \(h(n) = \) total number of violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns (\(4^4 = 256\) states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: \(h(n) = \) number of attacks
Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

\[R = \frac{\text{number of constraints}}{\text{number of variables}} \]

Summary

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values
- Backtracking = depth-first search with one legal variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- The constraint graph representation allows analysis of problem structure
- Tree-structured CSPs can be solved in linear time
- Iterative min-conflicts is usually effective in practice
Local Search Methods

- Queue-based algorithms keep fallback options (backtracking)
- Local search: improve what you have until you can’t make it better
- Generally much more efficient (but incomplete)

Types of Problems

- Planning problems:
 - We want a path to a solution (examples?)
 - Usually want an optimal path
 - *Incremental formulations*

- Identification problems:
 - We actually just want to know what the goal is (examples?)
 - Usually want an optimal goal
 - *Complete-state formulations*
 - Iterative improvement algorithms
Hill Climbing

- Simple, general idea:
 - Start wherever
 - Always choose the best neighbor
 - If no neighbors have better scores than current, quit

- Why can this be a terrible idea?
 - Complete?
 - Optimal?

- What’s good about it?

Hill Climbing Diagram

- Random restarts?
- Random sideways steps?
Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

```python
function SIMULATED-ANNEALING(problem, schedule) returns a solution state

inputs: problem, a problem
         schedule, a mapping from time to "temperature"

local variables: current, a node
                 next, a node
                 T, a "temperature" controlling prob. of downward steps

current ← MAKE-NODE(INITIAL-STATE[problem])
for t ← 1 to ∞ do
    T ← schedule[t]
    if T = 0 then return current
    next ← a randomly selected successor of current
    ΔE ← VALUE[next] - VALUE[current]
    if ΔE > 0 then current ← next
    else current ← next only with probability e^ΔE/T
```

- Theoretical guarantee:
 - Stationary distribution: \(p(x) \propto e^{-E(x)/T} \)
 - If T decreased slowly enough, will converge to optimal state!

- Is this an interesting guarantee?

- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape, the less likely you are to every make them all in a row
 - People think hard about ridge operators which let you jump around the space in better ways
Beam Search

- Like greedy search, but keep K states at all times:
 - Variables: beam size, encourage diversity?
 - The best choice in MANY practical settings
 - Complete? Optimal?
 - Why do we still need optimal methods?

Genetic Algorithms

- Genetic algorithms use a natural selection metaphor
- Like beam search (selection), but also have pairwise crossover operators, with optional mutation
- Probably the most misunderstood, misapplied (and even maligned) technique around!
Example: N-Queens

- Why does crossover make sense here?
- When wouldn’t it make sense?
- What would mutation be?
- What would a good fitness function be?

Continuous Problems

- Placing airports in Romania
 - States: \((x_1, y_1, x_2, y_2, x_3, y_3)\)
 - Cost: sum of squared distances to closest city
Gradient Methods

- How to deal with continuous (therefore infinite) state spaces?
- Discretization: bucket ranges of values
 - E.g. force integral coordinates
- Continuous optimization
 - E.g. gradient ascent

\[\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3} \right) \]

\[x \leftarrow x + \alpha \nabla f(x) \]

Potential Fields

- Cost for:
 - Being far from goal
 - Being near an obstacle
- Go downhill
- What could go wrong?
Potential Field Methods

Define a function $u(q)$ such that

$u : \text{Configurations} \to \mathbb{R}$

$u \to \text{huge}$ as you move towards an obstacle

$u \to \text{small}$ as you move towards the goal

Write $d_g(q) = \text{distance from } q \text{ to } \text{goal}$

$d_i(q) = \text{distance from } q \text{ to nearest obstacle}$

One definition of u: $u(q) = d_i(q) - d_g(q)$

Preferred definition: $u(q) = \frac{1}{2} \sum (d_i(q))^2 + \frac{1}{2} \eta \frac{1}{d_i(q)^2}$

Next Time

- Probabilities (chapter 13)
 - Basis of most of the rest of the course
 - You might want to read up in advance!