CS 188: Artificial Intelligence Spring 2006

Lecture 7: CSPs II 2/7/2006

Dan Klein – UC Berkeley

Many slides from either Stuart Russell or Andrew Moore

Today

- More CSPs
 - Applications
 - Tree Algorithms
 - Cutset Conditioning
- Local Search

Reminder: CSPs

- CSPs:
 - Variables
 - Domains
 - Constraints
 - Implicit (provide code to compute)
 - Explicit (provide a subset of the possible tuples)
- Unary Constraints
- Binary Constraints
- N ay Constraints

Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra
- An early example of a computation posed as a CSP

- Look at all intersections
- · Adjacent intersections impose constraints on each other

Waltz on Simple Scenes

- Assume all objects:
 - Have no shadows or cracks
 - Three-faced vertices
 - "General position": no junctions change with small movements of the eye.
- Then each line on image is one of the following:
 - Boundary line (edge of an object) (→) with right hand of arrow denoting "solid" and left hand denoting "space"
 - Interior convex edge (+)
 - Interior concave edge (-)

Legal Junctions Only certain junctions are physically possible How can we formulate a CSP to label an image? Variables: vertices Domains: junction labels Constraints: both ends of a line should have the same label (x,y) in

Example: Boolean Satisfiability

- Given a Boolean expression, is it satisfiable?
- Very basic problem in computer science

$$p_1 \land (p_2 \rightarrow p_3) \land ((\neg p_1 \land \neg p_3) \rightarrow \neg p_2) \land (p_1 \lor p_3)$$

$$(p_1) \wedge (\neg p_2 \vee p_3) \wedge (p_1 \vee p_3 \vee \neg p_2) \wedge (p_1 \vee p_2 \vee p_3)$$

• 3 SAT: find a satisfying truth assignment

Example: 3-SAT

Variables: $p_1, p_2, \dots p_n$ Domains: {true, false}

Constraints: $p_i \vee p_j \vee p_k$

$$\begin{array}{c} \neg p_{i'} \lor p_{j'} \lor p_{k'} \\ \vdots \\ p_{i''} \lor \neg p_{j''} \lor \neg p_{k''} \end{array}$$

Implicitly conjoined must be

Symptoms

- Can't email

Can't IM

Can't print

CSPs: Queries

- Types of queries:
 - Legal assignment (last class)
 - All assignments
 - Possible values of some query variable(s) given some evidence (partial assignments)

Example: Fault Diagnosis Causes

SMTP down

DNS down

Firewall

blocking

Printer jam

- Fault networks:
 - Variables?
 - Domains?
 - Constraints?
- Various ways to query, given symptoms
 - Some cause (abduction)
 - Simplest cause
 - All possible causes
 - What test is most useful?
 - Prediction: cause to effect
- We'll see this idea again with Bayes' nets

Reminder: Consistency

- Basic solution: DFS / backtracking
 - Add a new assignment
 - Check for violations

Forward checking:

- Pre-filter unassigned domains after every assignment
- Only remove values which conflict with current assignments
- Arc consistency
 We only defined it for binary CSPs
 - Check for impossible values on all pairs of variables
 - Run (or not) after each assignment before recursing

Arc Consistency

function AC-3(esp) returns the CSP, possibly with reduced domains inputs: esp, a binary CSP with variables $\{X_1, X_2, \ldots, X_n\}$ local variables: queue, a queue of arcs, initially all the arcs in espwhile queue is not empty do

 $(X_i, X_j) \leftarrow \text{Remove-First}(queue)$ if Remove-Inconsistent-Values (X_i, X_j) then for each X_k in NEIGHBORS[X_i] do add (X_k , X_i) to queue

function Remove-Inconsistent-Values (X_i, X_j) returns true iff succeeds

 $removed \leftarrow false$ for each x in Domain[X_i] do

if no value y in $\mathrm{DOMAIN}[X_j]$ allows (x,y) to satisfy the constraint $X_i \leftrightarrow X_j$ then delete x from Domain[X_i]: $removed \leftarrow tru$

Limitations of Arc Consistency

- After running arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node's domain has a value which meets that node's unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.
- Higher k more expensive to compute

Strong K-Consistency

- Strong k-consistency: also k-1, k-2, ... 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
- Why?
 - Choose any assignment to any variable
 - Choose a new variable
 - By 2-consistency, there is a choice consistent with the first
 - Choose a new variable
 - By 3-consistency, there is a choice consistent with the first 2
- Lots of middle ground between arc consistency and nconsistency! (e.g. path consistency)

Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has c variables out of n total

- Worst-case solution cost is O((n/c)(d²)), linear in n

 E.g., n = 80, d = 2, c = 20

 2⁸⁰ = 4 billion years at 10 million nodes/sec
- (4)(2²⁰) = 0.4 seconds at 10 million nodes/sec

(E)

D

(C)

Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
 - Compare to general CSPs, where worst-case time is O(dⁿ)
- This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.

Tree-Structured CSPs

Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering

- For i = n : 2, apply RemoveInconsistent(Parent(X_i),X_i)
- For i = 1: n, assign X_i consistently with Parent(X_i)
- Runtime: O(n d²) (why?)

Tree-Structured CSPs

- Why does this work?
- Claim: After each node is processed leftward, all nodes to the right can be assigned in any way consistent with their parent.
- Proof: Induction on position

- Why doesn't this algorithm work with loops?
- Note: we'll see this basic idea again with Bayes' nets and call it belief propagation

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c

Iterative Algorithms for CSPs

- Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - Allow states with unsatisfied constraints
 - Operators reassign variable values
- Variable selection: randomly select any conflicted
- Value selection by min-conflicts heuristic:
 - Choose value that violates the fewest constraints
 - I.e., hillclimb with h(n) = total number of violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns (4⁴ = 256 states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: h(n) = number of attacks

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n=10,000,000)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$

Summary

- CSPs are a special kind of search problem:

 States defined by values of a fixed set of variables
- Goal test defined by constraints on variable values
- Backtracking = depth-first search with one legal variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- The constraint graph representation allows analysis of problem
- Tree-structured CSPs can be solved in linear time
- Iterative min-conflicts is usually effective in practice

Local Search Methods

- Queue-based algorithms keep fallback options (backtracking)
- Local search: improve what you have until you can't make it better
- Generally much more efficient (but incomplete)

Types of Problems

- Planning problems:
 - We want a path to a solution (examples?)
 - Usually want an optimal path
 - Incremental formulations

- Identification problems:
 - We actually just want to know what the goal is (examples?)
 - Usually want an optimal goal
 - Complete-state formulations
 - Iterative improvement algorithms

Hill Climbing

- Simple, general idea:
 - Start wherever
 - Always choose the best neighbor
 - If no neighbors have better scores than current, quit
- Why can this be a terrible idea?
 - Complete?
 - Optimal?
- What's good about it?

Simulated Annealing

Idea: Escape local maxima by allowing downhill moves

But make them rarer as time goes on

function SIMULATED-ANNEALING (problem, schedule) returns a solution state inputs: problem, a problem
schedule, a mapping from time to "temperature" local variables: current, a node next, a node T, a "temperature" controlling prob. of downward steps $mrent \leftarrow Make-Node(Initial-State[problem])$ for $t \leftarrow 1$ to ∞ do $T \leftarrow schedule[t]$ if T = 0 then return current $\begin{array}{l} next \leftarrow \text{a randomly selected successor of } eurrent \\ \Delta E \leftarrow \text{Value}[next] - \text{Value}[eurrent] \end{array}$ if $\Delta E > 0$ then current \leftarrow else $\mathit{current} \leftarrow \mathit{next}$ only with probability $e^{\Delta \ E/T}$

Simulated Annealing

- Theoretical guarantee:
 - ullet Stationary distribution: $p(x) \propto e^{rac{E(x)}{kT}}$
 - If T decreased slowly enough, will converge to optimal state!
- Is this an interesting guarantee?
- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape, the less likely you are to every make them all in a row
 - People think hard about ridge operators which let you jump around the space in better ways

Beam Search

Like greedy search, but keep K states at all times:

Greedy Search

Beam Search

- Variables: beam size, encourage diversity?
- The best choice in MANY practical settings
- Complete? Optimal?
- Why do we still need optimal methods?

Example: N-Queens Why does crossover make sense here? When wouldn't it make sense?

- What would mutation be?
- What would a good fitness function be?

Potential Field Methods

SIMPLE MOTION PLANNER:

Gradient descent on u

Define a function u(q)

u: Configurations $\to \Re$

Such that

 $u \rightarrow \text{huge}$ as you move towards an obstacle

 $u \rightarrow \text{small}$ as you move towards the goal

Write $d_{g}(q) = \text{distance from } q \text{ to } q \text{ goal}$

 $d_i(q)$ = distance from q to nearest obstacle

One definition of $u: u(q) = d_i(q) - d_g(q)$

Preferred definition: $u(q) = \frac{1}{2} \sum (d_s(q))^2 + \frac{1}{2} \eta \frac{1}{d_i(q)^2}$

Next Time

- Probabilities (chapter 13)
 - Basis of most of the rest of the course
 - You might want to read up in advance!