
1

CS 188: Artificial Intelligence
Spring 2006

Lecture 7: CSPs II
2/7/2006

Dan Klein – UC Berkeley

Many slides from either Stuart Russell or Andrew Moore

Today

More CSPs
Applications
Tree Algorithms
Cutset Conditioning

Local Search

Reminder: CSPs
CSPs:

Variables
Domains
Constraints

Implicit (provide code to
compute)
Explicit (provide a subset of
the possible tuples)

Unary Constraints
Binary Constraints
N- ary Constraints

Example: The Waltz Algorithm
The Waltz algorithm is for interpreting line drawings of
solid polyhedra
An early example of a computation posed as a CSP

Look at all intersections
Adjacent intersections impose constraints on each other

?

Waltz on Simple Scenes
Assume all objects:

Have no shadows or cracks
Three-faced vertices
“General position”: no junctions
change with small movements of
the eye.

Then each line on image is
one of the following:

Boundary line (edge of an
object) (→) with right hand of
arrow denoting “solid” and left
hand denoting “space”
Interior convex edge (+)
Interior concave edge (-)

Legal Junctions
Only certain junctions are
physically possible
How can we formulate a CSP to
label an image?
Variables: vertices
Domains: junction labels
Constraints: both ends of a line
should have the same label

x

y
(x,y) in

, , …

2

Example: Boolean Satisfiability

Given a Boolean expression, is it satisfiable?
Very basic problem in computer science

Turns out you can always express in 3- CNF

3- SAT: find a satisfying truth assignment

Example: 3-SAT

Variables:
Domains:
Constraints:

Implicitly
conjoined
(all clauses
must be
satisfied)

CSPs: Queries

Types of queries:
Legal assignment (last
class)
All assignments
Possible values of some
query variable(s) given
some evidence (partial
assignments)

Example: Fault Diagnosis
Fault networks:

Variables?
Domains?
Constraints?

Various ways to query,
given symptoms

Some cause (abduction)
Simplest cause
All possible causes
What test is most useful?
Prediction: cause to effect

We’ll see this idea again with Bayes’ nets

SMTP down

DNS down

Firewall
blocking

Printer jam
Can’t print

Can’t email

Can’t IM

Causes Symptoms

Reminder: Consistency
Basic solution: DFS / backtracking

Add a new assignment
Check for violations

Forward checking:
Pre-filter unassigned domains after
every assignment
Only remove values which conflict with
current assignments

Arc consistency
We only defined it for binary CSPs
Check for impossible values on all pairs
of variables
Run (or not) after each assignment
before recursing

Arc Consistency

3

Limitations of Arc Consistency

After running arc
consistency:

Can have one solution
left
Can have multiple
solutions left
Can have no solutions
left (and not know it)

What went
wrong here?

K-Consistency
Increasing degrees of consistency

1-Consistency (Node Consistency):
Each single node’s domain has a value
which meets that node’s unary
constraints
2-Consistency (Arc Consistency): For
each pair of nodes, any consistent
assignment to one can be extended to
the other
K-Consistency: For each k nodes, any
consistent assignment to k-1 can be
extended to the kth node.

Higher k more expensive to compute

Strong K-Consistency
Strong k-consistency: also k-1, k-2, … 1 consistent
Claim: strong n-consistency means we can solve without
backtracking!
Why?

Choose any assignment to any variable
Choose a new variable
By 2-consistency, there is a choice consistent with the first
Choose a new variable
By 3-consistency, there is a choice consistent with the first 2
…

Lots of middle ground between arc consistency and n-
consistency! (e.g. path consistency)

Problem Structure
Tasmania and mainland are
independent subproblems

Identifiable as connected
components of constraint graph

Suppose each subproblem has c
variables out of n total

Worst-case solution cost is
O((n/c)(dc)), linear in n
E.g., n = 80, d = 2, c =20
280 = 4 billion years at 10 million
nodes/sec
(4)(220) = 0.4 seconds at 10 million
nodes/sec

Tree-Structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be
solved in O(n d2) time

Compare to general CSPs, where worst-case time is O(dn)

This property also applies to logical and probabilistic reasoning: an
important example of the relation between syntactic restrictions and
the complexity of reasoning.

Tree-Structured CSPs
Choose a variable as root, order
variables from root to leaves such
that every node’s parent precedes
it in the ordering

For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
For i = 1 : n, assign Xi consistently with Parent(Xi)

Runtime: O(n d2) (why?)

4

Tree-Structured CSPs
Why does this work?
Claim: After each node is processed leftward, all nodes
to the right can be assigned in any way consistent with
their parent.
Proof: Induction on position

Why doesn’t this algorithm work with loops?

Note: we’ll see this basic idea again with Bayes’ nets
and call it belief propagation

Nearly Tree-Structured CSPs

Conditioning: instantiate a variable, prune its neighbors' domains

Cutset conditioning: instantiate (in all ways) a set of variables such
that the remaining constraint graph is a tree

Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c

Iterative Algorithms for CSPs
Hill-climbing, simulated annealing typically work with
“complete” states, i.e., all variables assigned

To apply to CSPs:
Allow states with unsatisfied constraints
Operators reassign variable values

Variable selection: randomly select any conflicted
variable

Value selection by min-conflicts heuristic:
Choose value that violates the fewest constraints
I.e., hillclimb with h(n) = total number of violated constraints

Example: 4-Queens

States: 4 queens in 4 columns (44 = 256 states)
Operators: move queen in column
Goal test: no attacks
Evaluation: h(n) = number of attacks

Performance of Min-Conflicts
Given random initial state, can solve n-queens in almost constant
time for arbitrary n with high probability (e.g., n = 10,000,000)

The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

Summary
CSPs are a special kind of search problem:

States defined by values of a fixed set of variables
Goal test defined by constraints on variable values

Backtracking = depth-first search with one legal variable assigned
per node

Variable ordering and value selection heuristics help significantly

Forward checking prevents assignments that guarantee later failure

Constraint propagation (e.g., arc consistency) does additional work
to constrain values and detect inconsistencies

The constraint graph representation allows analysis of problem
structure

Tree-structured CSPs can be solved in linear time

Iterative min-conflicts is usually effective in practice

5

Local Search Methods

Queue-based algorithms keep fallback
options (backtracking)

Local search: improve what you have until
you can’t make it better

Generally much more efficient (but
incomplete)

Types of Problems
Planning problems:

We want a path to a solution
(examples?)
Usually want an optimal path
Incremental formulations

Identification problems:
We actually just want to know what
the goal is (examples?)
Usually want an optimal goal
Complete-state formulations
Iterative improvement algorithms

Hill Climbing

Simple, general idea:
Start wherever
Always choose the best neighbor
If no neighbors have better scores than
current, quit

Why can this be a terrible idea?
Complete?
Optimal?

What’s good about it?

Hill Climbing Diagram

Random restarts?
Random sideways steps?

Simulated Annealing
Idea: Escape local maxima by allowing downhill moves

But make them rarer as time goes on

Simulated Annealing
Theoretical guarantee:

Stationary distribution:
If T decreased slowly enough,
will converge to optimal state!

Is this an interesting guarantee?

Sounds like magic, but reality is reality:
The more downhill steps you need to escape, the less
likely you are to every make them all in a row
People think hard about ridge operators which let you
jump around the space in better ways

6

Beam Search
Like greedy search, but keep K states at all
times:

Variables: beam size, encourage diversity?
The best choice in MANY practical settings
Complete? Optimal?
Why do we still need optimal methods?

Greedy Search Beam Search

Genetic Algorithms

Genetic algorithms use a natural selection metaphor
Like beam search (selection), but also have pairwise
crossover operators, with optional mutation
Probably the most misunderstood, misapplied (and even
maligned) technique around!

Example: N-Queens

Why does crossover make sense here?
When wouldn’t it make sense?
What would mutation be?
What would a good fitness function be?

Continuous Problems
Placing airports in Romania

States: (x1,y1,x2,y2,x3,y3)
Cost: sum of squared distances to closest city

Gradient Methods

How to deal with continous (therefore infinite)
state spaces?
Discretization: bucket ranges of values

E.g. force integral coordinates
Continuous optimization

E.g. gradient ascent

Image from vias.org

Potential Fields

Cost for:
Being far from goal
Being near an
obstacle

Go downhill
What could go
wrong?

7

Potential Field Methods
SIMPLE MOTION
PLANNER:

Gradient descent on u

() () ()

() ()()
()∑ +=

−=

=⎟
⎠
⎞

⎜
⎝
⎛

=⎟
⎠
⎞

⎜
⎝
⎛

→
→

ℜ→

⎟
⎠
⎞

⎜
⎝
⎛

2
2

~~

~~~

~

1
2
1

2
1   :definition Preferred

   : of definition One

obstaclenearest   to from distance              

goal   to from distance      Write

goal  the towardsmoveyou  as   small    
obstaclean   towardsmoveyou  as    huge    

Such that
ionsConfigurat:    

   function   a Define

qd
qdqu

qdqdquu

qqd

qqqd

u
u

u

qu

i
g

gi

i

g

η

Next Time

Probabilities (chapter 13)
Basis of most of the rest of the course
You might want to read up in advance!


