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Many slides from either Stuart Russell or Andrew Moore

Today

= Bayes’ rule

= Expectations and utilities

= Naive Bayes models
= Classification
= Parameter estimation
= Real world issues

Bayes’ Rule

Two ways to factor a joint distribution over two variables:
P(a,y) = P(zly) P(y) = P(ylz) P(2)

Dividing, we get:
PGaly) = T

Why is this at all helpful?
= Lets us invert a conditional distribution
= Often the one conditional is tricky but the other simple
= Foundation of many systems we'll see later (e.g. ASR, MT)

In the running for most important Al equation!

More Bayes’ Rule

= Diagnostic probability from causal probability:

P(Effect|Cause)P(Cause)
P(Effect)

P(Cause|Effect) =

= Example:
= mis meningitis, s is stiff neck

P(s|m)P(m) _ 0.8 x 0.0001

POmls) = =515 0.1

= 0.0008

= Note: posterior probability of meningitis still very small
= Does this mean you should ignore a stiff neck?

Expectations

Real valued functions of random variables:

S X—=R
Expectation of a function a random variable

according to a distribution over the same
variable

Utilities

Epoxlf (X)) = Z P(x) f(x)

Example: Expected value of a fair die roll

1

1 1 1 1 1
SX14+Zx24+ X3+ x4+ x5+2x6
g Xl X2tgx3tgxatgxstyx

ol lw N[k | X
N~
2=
S|
olua|lrlw Nk

=35

Preview of utility theory (much more later)
Utilities:
= A utility or reward is a function from events to real numbers

= E.g. using a certain airport plan and getting there on time
= We often talk about actions having expected utilities in a given state

utility(a, s) = Ep(s)s,a) [reward(s, a, s")]
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= The rational action is the one which maximizes expected utility
= This depends on (1) the probability and (2) the magnitude of the outcomes




Example: Plane Plans

How early to leave? 0.5 1
Why might agents ai .<:
make different S o5 ) -u

decisions? s
= Different rewards

= Different evidence 0.9 -2
= Different beliefs ao
different models; —
( ) 5 oa ) 12

We'll use the principle K]
of maximum expected

utility for classification, 0.99 -3
decision networks, asz
reinforcement 5 13
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Combining Evidence

= What if there are multiple effects? P(M]

= E.g. diagnosis with two symptoms
= Meningitis, stiff neck, fever

PSR P(F|M)

P(mls, f) direct estimate
P(mls, f) = w «—— Bayes estimate
P(s, ) (no assumptions)
_ P(slm)P(flm)P(m) «— Conditional
Pmls, f) = W independence

+ < P(m, s, [) = P(slm)P(f|m)P(m)
P(mn, s, [) = P(s|m)P(f|im)P(m)

General Naive Bayes

= This is an example of a naive Bayes model:

ICI x [E|"

parameters e

P(Cause, Effecty ... Effect,) =

P(Cause) || P(Effect;|Cause)

i
nx |E| x|C| ee e

|C| parameters
parameters

= Total number of parameters is linear in n!

Inference for Naive Bayes

= Getting posteriors over causes
= Step 1: get joint probability of causes and evidence

P(Cyey...ep) =

P(ci,e1...en) P(c1) IT; P(egler)
P(cp,eq...en) |::> P(co) HilP(Bi‘CQ)

P(ey, 6.1 ...en) P(ep) TT; Plegler)

P -
= Step 2: get probability of evidence (er.-ven) +

= Step 3: renormalize @
P(Cle1...en)

General Naive Bayes

= What do we need in order to use naive Bayes?

= Some code to do the inference
= For fixed evidence, build P(C,e)
= Sum out C to get P(e)
= Divide to get P(Cle)

= Estimates of local conditional probability tables (CPTs)
= P(C), the prior over causes
= P(E|C) for each evidence variable
= These typically come from observed data
= These probabilities are collectively called the parameters of the
model and denoted by @

Parameter Estimation

= Estimating the distribution of a random variable X or X|Y?

= Empirically: collect data
= For each value x, look at the empirical rate of that value:

count(x) . . .

| | ,
total samples P =1/3
= This estimate maximizes the likelihood of the data (see homework)

L(z,6) = HPQ(M)

P(z) =

= Elicitation: ask a human!
= Usually need domain experts, and sophisticated ways of eliciting
probabilities (e.g. betting games)

= Trouble calibrating




Classification

A Spam Filter

= Data: labeled instances, e.g. emails marked spam/ham
= Training set
= Held out set
= Testset
= Experimentation VIl
= Learn model parameters (probabilities) on training set Data
= (Tune performance on held-out set)
= Run a single test on the test set
= Very important: never “peek” at the test set!
= Evaluation
= Accuracy: fraction of instances predicted correctl
Y P Y Held-Out
= Overfitting and generalization Data
= Want a classifier which does well on test data
= Overfitting: flﬂln? the training data very closely, but not
generalizing well Test
= We'll investigate overfitting and generalization formally in a Data
few lectures

. . Dear Sir.

Running example: naive

Bayes Spam filter First, I must solicit your confidence in this
transaction, this is by virture of its nature

as being utterly confidencial and top

secret. ...

Data:

Collection of emails, labeled
spam or ham

TO BE REMOVED FROM FUTURE

= Note: someone has to hand MAILINGS, SIMPLY REPLY TO THIS
label all this data! x MESSAGE AND PUT "REMOVE" IN THE
= Split into training, held-out, SUBJECT.
test sets

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Classifiers
" tLearn a m?del on the Ok, tknow this is blatantly OT but F'm
ralnlng Sel beginning to go insane. Had an old Dell
= Tune it on the held-out set Dimension XPS sitting in the corner and
= Test it on new emails in the decided to put it to use, | know it was
test set working pre being stuck in the corner, but
when | plugged it in, hit the power nothing
happened.

Baselines

= First task: get a baseline
= Baselines are very simple “straw man” procedures
= Help determine how hard the task is
= Help know what a “good” accuracy is

= Weak baseline: most frequent label classifier
= Gives all test instances whatever label was most common in the
training set
= E.g. for spam filtering, might label everything as ham
= Accuracy might be very high if the problem is skewed

= For real research, usually use previous work as a
(strong) baseline

Naive Bayes for Text

= Naive Bayes:
= Predict unknown cause (spam vs. ham)
= Independent evidence from observed variables (e.g. the words)

= Generative model*

P(C, W1 ... W) = P(CY ] P(WIIC)

i

= Tied distributions and bag-of-words
= Usually, each variable gets its own conditional probability
distribution
= In a bag-of-words model
= Each position is identically distributed
= All share the same distributions

= Why make this assumption?
*Minor detail: technically we're conditioning

on the length of the document here

Example: Spam Filtering

= Model:  P(C,Wy...Wyn) = P(C)[] P(W;|C)

= What are the parameters?

P(C) P(W|spam) P(W|ham)
ham : 0.63 the : 0.0156 the : 0.0210
spam: 0.37 to : 0.0153 to : 0.0133

and : 0.0115 of : 0.0119
of : 0.0095 2002: 0.0110
you : 0.0093 with: 0.0108
a : 0.0086 from: 0.0107
with: 0.0080 and : 0.0105
from: 0.0075 a : 0.0100

= Where do these tables come from?

Example: Spam Filtering

= Raw probabilities don't affect the posteriors; relative
probabilities (odds ratios) do:

P(Wlham) P(W|spam)
P(Wlspam) P(Wlham)
south-west : inf screens o inf
nation :inf minute :inf
morally :inf guaranteed : inf
nicely :inf $205.00 H |
extent :inf delivery :inf
seriously : inf signature : inf

What went wrong here?




Generalization and Overfitting

= These parameters will overfit the training data!

Unlikely that every occurrence of “minute” is 100% spam

Unlikely that every occurrence of “seriously” is 100% ham

What about all the words that don’t occur in the training set?

In general, we can't go around giving unseen events zero probability

= As an extreme case, imagine using the entire email as the only
feature

Would get the training data perfect (if deterministic labeling)

Wouldn't generalize at all

Just making the bag-of-words assumption gives us some generalization,

but isn't enough

= To generalize better: we need to smooth or regularize the estimates

Estimation: Smoothing

= Problems with maximum likelihood estimates:
= If | flip a coin once, and it's heads, what's the estimate for
P(heads)?
= What if | flip it 50 times with 27 heads?
= What if | flip 10M times with 8M heads?

= Basic idea:

= We have some prior expectation about parameters (here, the
probability of heads)
Given little evidence, we should skew towards our prior
Given a lot of evidence, we should listen to the data
Note: we also have priors over model assumptions!

Estimation: Smoothing

= Relative frequencies are the maximum likelihood estimates

Oprp = arg max P(X[0) count(x)

total samples

I::> P(x)=
= arg ;naxHPg(Xi)

1

= In Bayesian statistics, we think of the parameters as just another
random variable, with its own distribution

Oy 4p = arg max P(6)X)
[
= arg max P(X|6)P(8)/P(X) |::> 27?2
0

= arg max P(X|8)P(#)
4

Estimation: Laplace Smoothing

= Laplace’s estimate:

= Pretend you saw every outcome
once more than you actually did

@06

Prap(z) = GOl 21
Tale(z) +1] Pyr(X) = <§, 5

_clz)+1
T N4X) 32

Prap(X) = <7 —
rAP(X) 55
= Can derive this as a MAP

estimate with Dirichlet priors (see

cs281la)

)
)

Estimation: Laplace Smoothing

= Laplace’s estimate
(extended):

= Pretend you saw every
outcome k extra times

= What's Laplace smoothing
with k = 0?

= ks the strength of the prior

@00

Prapo(X) = <§, %>

32
Prap1(X) = <§" §>

102 101
203’ 203

= Laplace for conditionals:
= Smooth each condition

Prap1oo(X)= <
independently:

(e, 9) +

Prapr(zly) = m

)

Estimation: Linear Interpolation

= In practice, Laplace often performs poorly for P(X|Y):
= When |X| is very large
= When |Y| is very large

= Another option: linear interpolation
= Get P(X) from the data
= Make sure the estimate of P(X|Y) isn't too different from P(X)

Prin(zly) = aP(zly) + (1.0 — &) P(x)
* Whatif ais 0? 1?

= For even better ways to estimate parameters, as well as
details of the math see c¢s281a, ¢s294-5




Real NB: Smoothing

Tuning on Held-Out Data

= For real classification problems, smoothing is critical
= New odds ratios:

P(Wlham) P(Wlspam)

P(Wlspam) P(Wlham)
helvetica : 11.4 verdana : 28.8
seems : 10.8 Credit : 28.4
group 10.2 ORDER 1 27.2
ago 8.4 <FONT> : 26.9
areas 8.3 money 1 26.5

Do these make more sense?

Now we’ve got two kinds of unknowns
= Parameters: the probabilities P(Y|X), P(Y)
= Hyper-parameters, like the amount of ini
smoothing to do: k, o tralmng

Where to learn?
= Learn parameters from training data

accuracy

= Must tune hyper-parameters on different held-out
data test
= Why?
= For each value of the hyperparameters,
train and test on the held-out data 84

Choose the best value and do a final test
on the test data

Confidences from a Classifier

Precision vs. Recall

= The confidence of a probabilistic classifier:

>
= Posterior over the top label ¢
5
3
confidence(z) = arg max P(y|z) s DD
y =
= Represents how sure the classifier is of the Plylz)
classification ™
= Any probabilistic model will have Z
confidences £
= No guarantee they are correct § D
=l
= Calibration P(y|z)

= Weak calibration: higher confidences mean
higher accuracy

Strong calibration: confidence predicts
accuracy rate

What's the value of calibration?

.
accuracy

1

P{yl)

Let's say we want to classify web pages as - actual +
homepages or not

= In atest set of 1K pages, there are 3 homepages
= Our classifier says they are all non-homepages

99.7 accuracy!

Need new measures for rare positive events guessed +

Precision: fraction of guessed positives which were actually positive

Recall: fraction of actual positives which were guessed as positive

Say we guess 5 homepages, of which 2 were actually homepages
= Precision: 2 correct/ 5 guessed = 0.4

= Recall: 2 correct / 3 true = 0.67

Which is more important in customer support email automation?
Which is more important in airport face recognition?

Precision vs. Recall

Summary

= Precision/recall tradeoff
= Often, you can trade off
precision and recall
= Only works well with weakly
calibrated classifiers

precision

i recall
= To summarize the tradeoff:
= Break-even point: precision
value whenp=r
= F-measure: harmonic mean of

pandr: 5

VRSV

Bayes rule lets us do diagnostic queries with causal
probabilities

The naive Bayes assumption makes all effects
independent given the cause

We can build classifiers out of a naive Bayes model
using training data

Smoothing estimates is important in real systems

Classifier confidences are useful, when you can get
them




