
Notes on Hidden Markov Models

Michael I. Jordan
University of California at Berkeley

Hidden Markov Models
This is a lightly edited version of a chapter in a book

being written by Jordan. Since this is a draft, please
do not distribute this to anyone who is not a student
of CS 188 this term.

The model
A hidden Markov model is characterized by a set of

M states, by an initial probability distribution for the
first state, by a transition probability matrix linking
successive states, and by a state-dependent probability
distribution on the outputs.

We represent the state at time t as a multino-
mial random variable qt, with components qi

t, for
i = 1, . . . ,M .1 Thus qi

t is equal to one for a par-
ticular value of i and is equal to zero for j 6= i. We
use a subscript to denote the time step, thus qt is the
multinomial state at time t. The transition proba-
bility matrix A is the probability of transitioning be-
tween the multinomial states at successive time steps;
in particular, the (i, j)th entry aij is the transition
probability P (qj

t+1 = 1|qi
t = 1). Note that we assume

that this transition probability is constant as a func-
tion of t; that is, we assume a homogeneous hidden
Markov model. All of the algorithms that we describe
are readily generalized to the case of a varying A ma-
trix, however this case is less common in practice than
the homogeneous case.

We also need an initial condition. The vector π
represents the probability distribution on the initial
state; in particular, we have πi = P (qi

1 = 1).
There are three related graphical representations of

hidden Markov models that it is important to distin-
guish. The first representation, shown in Figure 1, is
the stochastic automaton. In this diagram, the compo-
nents of the multinomial state are shown as separate
nodes and the arcs represent the transition probabili-
ties. This diagram is not a graphical model; in partic-
ular there are cycles in the graph and the arcs do not
represent assertions of conditional independence. The

1Throughout the chapter we refer to t as a temporal variable
for concreteness; the HMM model is of course applicable to any
kind of sequential data.

aa

a13

11 12

1 2

3

Figure 1: A representation of a three-state HMM as
a stochastic automaton. The states are labeled with
integers, which correspond to the three components
of the multinomial qt variable. We have shown the
transition probabilities a1j associated with transitions
from the first state.

diagram is useful, however, as an explicit representa-
tion of the one-step dynamics of the HMM.

To represent a sequence, we can “unroll” the au-
tomaton in space, copying each of the state compo-
nent nodes at each time step. This yields the lattice
diagram shown in Figure 2, Notice that we have also
represented the output sequence in this diagram, as a
sequence of nodes that depends via the vertical links in
the diagram on the choice of state at each step. The
lattice diagram is useful for some purposes, in par-
ticular for understanding the recursive inference algo-
rithms that we discuss below. The diagram contains
more detail than we generally care to see, however,
and moreover it is unable to represent the critical fact
that only one of the state nodes can be “on” at each
step; i.e., that the nodes are components of a multi-
nomial random variable.

We obtain the third representation of the HMM by
grouping the state component nodes of the lattice di-
agram into a single multinomial state node at each
step. This diagram, shown in Figure 3, is the stan-

1

a13
1

2

3

1
a

2

qq q q
a11
a12

13

a11
a12

2

1

3

1 2 3 T

3

2

1

3

Figure 2: A representation of a three-state HMM as
a lattice. Each vertical slice represents a time step,
and the three nodes represent the components of the
multinomial qt variable. The states are labeled with
integers, which correspond to the three components of
the qt variable. We have shown the transition prob-
abilities a1j associated with transitions from the first
state.

2q 3
q

T
qq

1

y y y y
2 3 T1

A A

Figure 3: A representation of a three-state HMM as a
graphical model. Each vertical slice represents a time
step. The top node represents the multinomial qt vari-
able and the bottom node represents the observable
yt variable. Note that the components of qt are sup-
pressed in this diagram. The transition probabilities
aij are the components of the A matrix.

dard graphical model representation of an HMM. The
diagram hides the numerical detail associated with the
transition matrix, and reveals the conditional indepen-
dence assumptions behind the HMM.

Focusing on the graphical representation of an
HMM in Figure 3, let us now consider assigning a joint
probability distribution to the HMM. As always we
must assign local conditional probabilities to each of
the nodes, conditioning on each nodes’ parents. The
first state node in the sequence has no parents and
thus requires an unconditional distribution; the ini-
tial probability distribution π. Each subsequent state
node has a single previous state node as its (sole) par-
ent, and thus requires a MxM matrix to specify its
local conditional probability. This matrix is the state
transition matrix A.

The observable or output nodes are attached to the
state nodes. We denote the tth node as yt and denote
the sequence of output nodes as y. Each output node
has a single state node as a parent, thus we require a
set of M probability distributions to characterize the
local conditional probability of an output node. We
denote these distributions generically as P (yt|qt, η),
where η is a parameter vector. In our discussion of
inference we will not need to make any particular as-
sumptions about the functional form of this local con-
ditional probability nor indeed about the type of ran-
dom variables represented by the output nodes (they
can be discrete-valued, continuous-valued, or mixed—
the choice depending on the particular kind of data
being modeled). We need only be able to evaluate
P (yt|qt, η) for a fixed value of yt. Later, when we dis-
cuss the parameter estimation problem, the functional
form will of course become highly relevant, and at that
point we will discuss particular choices for P (yt|qt, η).

Conditional independencies
From the graphical model we can read off various

conditional independencies. The main conditional in-
dependency of interest is that obtained by condition-
ing on a single state node. Conditioning on qt renders
qt−1 and qt+1 independent; moreover it renders qs in-
dependent of qu, for s < t and t < u. Thus, “the
future is independent of the past, given the present.”
This statement is also true for output nodes ys and
yu, again conditioning on the state node qt.

Note that conditioning on an output node, on the
other hand, does not separate nodes in the graph and
thus does not yield any conditional independencies. It
is not true that the future is independent of the past,
given the present, if by “present” we mean the current
output.

Indeed, conditioning on all of the output nodes

fails to separate any of the remaining nodes. That is,
given the observable data, we cannot expect any in-
dependencies to be induced between the state nodes.
Thus we should expect that our inference algorithm
must take into account possible dependencies between
states at arbitrary locations along the chain. In par-
ticular, learning something about the final state node
in the chain, qT (e.g., by observing yT), can change the
posterior probability distribution for the first node in
the chain, q1. We expect that our inference algorithm
will have to propagate information from one end of
the chain to the other.
Joint probabilities and conditional proba-
bilities

Let us now assemble the local conditional prob-
abilities into a joint probability distribution. As
always, the joint probability is obtained by tak-
ing a product over the local conditional probabili-
ties. Thus, for a particular sample point (q, y) =
(q1, q2, . . . , qT , y1, y2, . . . , yT), we obtain the following
joint probability:

P (q, y) = πq1

T−1∏
t=1

aqt,qt+1

T∏
t=1

P (yt|qt, η). (1)

In writing this equation we have introduced a conven-
tion under which the state variables are allowed to be
used as subscripts. Formally, we interpret this short-
hand as follows:

aqt,qt+1 ≡
M∏

i,j=1

[aij]
qi

tqj
t+1 . (2)

Given that only one of the components of qt is one,
only one term on the right-hand side is different from
one, and we see that we obtain aqt,qt+1 = P (qt+1, qt)
as desired. Similarly,

πq1 ≡
M∏
i=1

[πi]
qi
1 (3)

is justified as the definition of πq1 . Although we use
the shorthand throughout the chapter, we will also
find use for the expanded forms in Eqs. 2 and 3 in the
section on parameter estimation.

The inference problem involves computing the
probability of a hidden state vector q given an observ-
able output y. That is, we are required to compute
the probability P (q|y):

P (q|y) =
P (q, y)
P (y)

(4)

Calculating the numerator in this expression simply
involves substituting the particular values of q and y
into Eq. 1. Calculating the denominator, on the other
hand, involves computing a sum across all possible
values of the hidden states:

P (y) =
∑
q1

∑
q2

· · ·
∑
qT

π(q1)
T−1∏
t=1

aqt,qt+1

T∏
t=1

P (yt|qt, η).

(5)
This sum should give us pause. Each state node qt

can take on M values, and we have T state nodes.
This implies that we must perform MT sums, a wildly
intractable number for reasonable values of M and
T . Is it possible to perform inference efficiently for
HMMs?

The way out of our seeming dilemma lies in the
factorized form of the joint probability distribution
(Eq. 1). Each factor involves only one or two of the
state variables, and the factors form a neatly orga-
nized chain. This suggests that it ought to be possible
to move these sums “inside” the product in a system-
atic way. Moving the sums as far as possible ought to
reduce the computational burden significantly. Con-
sider, for example, the sum over qT . This sum can
be brought inside until the end of the chain and ap-
plied to the two factors involving qT . Once this sum
is performed the result can be combined with the two
factors involving qT−1 and the sum over qT−1 can be
performed. We begin to hope that we can organize
our calculation as a recursion.
Inference

To reveal the recursion behind the HMM inference
problem as simply as possible, let us consider an in-
ference problem that is seemingly easier than the full
problem. Rather than calculating P (q|y) for the entire
state sequence q, we focus on a particular state node
qt and ask to calculate its posterior probability, that
is, we calculate P (qt|y). This posterior probability–
analogous to the posterior probability over mixture
components that we encountered for mixture models–
will turn out to play a key role in our solution to the
parameter estimation problem. Moreover, calculating
this conditional probability in fact solves the full infer-
ence problem. To see this, note that P (qt|y) has P (y)
in its denominator and thus has the same core com-
plexity as the full inference problem. Indeed, given
that the calculation of the numerator P (q, y) for the
full inference problem (Eq. 4 involves no sums (we sim-
ply chain through the nodes and compute the product
in Eq. 1), calculating the denominator in this (seem-
ingly) simpler problem suffices.

We thus turn to the calculation of P (qt|y). To make

A
qq

y y

t+1t

t t+1

Figure 4: A fragment of the graphical model represen-
tation of an HMM.

progress, we need to take advantage of the conditional
independencies in our graphical model, and to do so
we need to condition on a state node. This is achieved
by reversing the terms qt and y via an application of
Bayes rule:

P (qt|y) =
P (y|qt)P (qt)

P (y)
.

We now use conditional independence:

P (qt|y) =
P (y1, . . . , yt|qt)P (yt+1, . . . , yT |qt)P (qt)

P (y)
.

(Verifying this equation is best done by inspecting the
graphical model fragment in Figure 4 and observing
that the separation properties of the graph correspond
to the factorization in the equation). Finally, we re-
group the terms and make a definition:

P (qt|y) =
P (y1, . . . , yt, qt)P (yt+1, . . . , yT |qt)

P (y)

=
α(qt)β(qt)

P (y)
,

where
α(qt) ≡ P (y1, . . . , yt, qt)

is the probability of emitting a partial sequence of out-
puts y1, . . . , yt and ending up in state qt, and

β(qt) = P (yt+1, . . . , yT |qt)

is the probability of emitting a partial sequence of out-
puts yt+1, . . . , yT given that the system starts in state
qt.

Note that both α(qt) and β(qt) are vectors, with
components α(qi

t) and β(qi
t). Moreover, given that the

sum of P (qt|y) over the components of qt must equal
one, we use Eq. 6 to obtain:

P (y) =
∑

i

α(qi
t)β(qi

t). (6)

That is, we can obtain the likelihood P (y) by calcu-
lating α(qt) and β(qt) for any t and summing their
product.

We make one additional definition: γ(qt) will de-
note the posterior probability P (qt|y). Thus:

γ(qt) ≡ α(qt)β(qt)
P (y)

, (7)

where P (y) is computed once, as the normalization
constant for a particular (arbitrary) choice of t.

We have reduced our problem to that of calculating
the alphas and the betas. This is a useful reduction
because, as we now see, these quantities can be com-
puted recursively.

Let us first consider the alpha variables. Given that
α(qt) depends only on quantities up to time t, and
given the Markov properties of our model, we might
hope to obtain a recursion between α(qt) and α(qt+1).
Indeed we have the following:

α(qt+1) = P (y1, . . . , yt+1, qt+1) (8)
= P (y1, . . . , yt+1|qt+1)P (qt+1) (9)
= P (y1, . . . , yt|qt+1)P (yt+1|qt+1)P (qt+1) (10)
= P (y1, . . . , yt, qt+1)P (yt+1|qt+1) (11)

=
∑
qt

P (y1, . . . , yt, qt, qt+1)P (yt+1|qt+1) (12)

=
∑
qt

P (y1, . . . , yt, qt+1|qt)P (qt)P (yt+1|qt+1) (13)

=
∑
qt

P (y1, . . . , yt|qt)P (qt+1|qt)P (qt)P (yt+1|qt+1)(14)

=
∑
qt

P (y1, . . . , yt, qt)P (qt+1|qt)P (yt+1|qt+1) (15)

=
∑
qt

α(qt)aqt,qt+1P (yt+1|qt+1). (16)

Throughout this derivation the key idea is to condition
on a state and then use the conditional independence
properties of the model to decompose the equation.
This is done in Eqs. 10 and 16, both of which can
be verified by examining the separation properties of
the graphical model fragment in Figure 4. The sec-
ond key idea is to introduce a variable, in this case
qt, by marginalizing over it (cf. Eq. 12). Once qt is
introduced the recursion follows readily.

The lattice diagram helps to clarify the computa-
tion of the alpha variables. Assuming that we have
stored the vector α(qt) at the tth layer of nodes in
diagram, we calculate each component of α(qt+1) by
considering all of the paths arriving at the correspond-
ing node at slice t + 1 in the diagram. The probabil-
ities α(qt) represent the probabilities of arriving at a

particular state in slice t, having generated the par-
tial output sequence y1, . . . , yt. To evaluate the alpha
vector at time t + 1 we sum over all paths from the
nodes at time t, weighted by the transition probabili-
ties aqt,qt+1 . We then extend the output sequence by
multiplying by P (yt+1|qt+1). The calculation requires
O(M2) operations—for each of the M state compo-
nents at time t + 1, we require M multiplications us-
ing the alpha variables from time t. Once the vec-
tor α(qt+1) has been calculated, it replaces the vector
α(qt). Thus the storage requirements of the algorithm
remain constant in time. Note that the algorithm pro-
ceeds “forward” in time, from the initial time step to
time step T .

For the beta variables we obtain a “backward” re-
cursion by expressing β(qt) in terms of β(qt+1):

β(qt) = P (yt+1, . . . , yT |qt) (17)

=
∑
qt+1

P (yt+1, . . . , yT , qt+1|qt) (18)

=
∑
qt+1

P (yt+1, . . . , yT |qt+1, qt)P (qt+1|qt) (19)

=
∑
qt+1

P (yt+2, . . . , yT |qt+1)P (yt+1|qt+1)P (qt+1|qt)(20)

=
∑
qt+1

β(qt+1)aqt,qt+1P (yt+1|qt+1) (21)

(22)

where the various steps involving conditional indepen-
dence are again clarified by making reference to the
graphical model fragment in Figure 4. Note that the
beta recursion is a backwards recursion; that is, we
start at the final time step T and proceed backwards
to the initial time step.

We also must specify the initial conditions for the
recursions. For the alpha recursion, the definition of
alpha at the first time step yields:

α(q1) = P (y1, q1) (23)
= P (y1|q1)P (q1) (24)
= P (y1|q1)πq1 . (25)

As for the beta recursion, the definition of β(qT) is un-
helpful, given that it makes reference to a non-existent
yT+1, but we see from the beta recursion that β(qT−1)
will be calculated correctly if we define β(qT) to be a
vector of ones. Alternatively, computing P (y) at time
T , we have:

P (y) =
∑

i

α(qi
T)β(qi

T) (26)

=
∑

i

α(qi
T) (27)

=
∑

i

P (y1, . . . , yT , qi
T) (28)

= P (y), (29)

and we see that the definition makes sense.
If we need only the likelihood P (y), Eq. 26 shows

us that it is not necessary to compute the betas; a
single forward pass for the alphas will suffice. More-
over, Eq. 6 tell us that any partial forward pass up
to time t to compute α(qt), accompanied by a partial
backward pass to compute β(qt), will also suffice. To
compute the posterior probabilities for all of the states
qt, however, requires us to compute alphas and betas
for each time step. Thus we require a forward pass
and a backward pass for a complete solution to the
inference problem.

To summarize our discussion of inference, we have
uncovered a pair of recursions that provide us with
the probabilities that we need. Given an observed se-
quence y, we run the alpha recursion forward in time.
If we require only the likelihood we simply sum the
alphas at the final time step. If we also require the
posterior probabilities, we proceed to the beta recur-
sion, which is run backward in time. The alphas and
betas are then substituted into Eq. 7 to calculate the
γ(qt) posteriors.

