CS 188: Artificial Intelligence
Spring 2009

Lecture 1: Introduction
1/20/09

John DeNero -- UC Berkeley
Most slides over the course adapted from
either Dan Klein, Stuart Russell, or Andrew Moore

Course Info

- **Course Staff:**
 - Instructor: John DeNero
 - GSIs: Nimar Arora, Dan Gillick & Nick Hay

- **Course Website:**
 - http://inst.cs.berkeley.edu/~cs188/
 - Syllabus, assignments, course info, faq, etc.

- **Announcements & Forums:**
 - bspace.berkeley.edu (linked from course website)
 - Post your questions to the forum

More Course Info

- **Book:** Russell & Norvig, AI: A Modern Approach, 2nd Ed.

- **Prerequisites:**
 - (CS 61A or B) and (Math 55 or CS 70)

- **Work and Grading:**
 - 5 projects & 4 written assignments (50%)
 - Programming: Python, groups of 1-2
 - Written: solve together, write-up alone
 - 5 late days for projects only
 - Midterm (20%) -- Evening of March 19
 - Final (30%)
 - Fixed grading scale
 - Participation
 - Academic integrity policy

How Much of AI is Math?

- A lot, but not right away
- Understanding probabilities will help you a great deal
- Four weeks from now, there will be many more equations

Today

- What is artificial intelligence?
- What is this course?
- Our first AI program

Sci-Fi AI?
Sci-Fi AI Compared to Real AI

Cyberdyne Systems
T-800 Series
Model 101

VS

Ali Rahimi and
Shen-Hui Lee's
web cam

[VIDEO]

Vision (Perception)

- Object and character recognition
- Scene segmentation
- Image classification

Robotics

- Robotics
 - Part mech. eng.
 - Part AI
 - Reality much harder than simulations!
- Technologies
 - Vehicles
 - Rescue
 - Soccer!
 - Lots of automation…
- In this class:
 - We ignore mechanical aspects
 - Methods for planning
 - Methods for control

[VIDEO]

Natural Language

- Speech technologies
 - Automatic speech recognition (ASR)
 - Dialog systems, speaker identification, meeting analysis, etc.
- Language processing technologies
 - Machine translation
 - Question answering
 - Linguistic analysis

Our research covers a range of topics in natural language processing.

Logic

- Logical systems
 - Theorem provers
 - NASA fault diagnosis
 - Question answering
- Methods
 - Deduction systems
 - Constraint satisfaction
 - Satisfiability solvers
 (huge advances here!)

Game Playing

- May, '97: Deep Blue vs. Kasparov
 - First match won against world-champion
 - "Intelligent, creative" play
 - 200 million board positions per second!
 - Humans understood 99.9% of Deep Blue's moves
 - Can do about the same now with a big PC cluster
- Open question:
 - How can humans compete with computers at all???
- 1996: Kasparov Beats Deep Blue
 - "I could feel --- I could smell --- a new kind of intelligence across the table."
- 1997: Deep Blue Beats Kasparov
 - "Deep Blue hasn't proven anything."
Decision Making

- Scheduling, e.g. airline routing, military
- Route planning, e.g. mapquest
- Medical diagnosis
- Automated help desks
- Fraud detection
- Spam classifiers
- Web search engines
- etc.

Rational Decisions

We’ll use the term **rational** in a particular way:

- Rational: maximally achieving pre-defined goals
- Rational only concerns what decisions are made (not the thought process behind them)
- Goals are expressed in terms of the utility of outcomes
- Being rational means maximizing your expected utility

A better title for this course would be: **Computational Rationality**

What About the Brain?

- Brains (human minds) are very good at making rational decisions (but not perfect)
- Brains are to intelligence as wings are to flight
- Brains aren’t as modular as software
- Lessons learned: prediction and simulation are key to decision making

Designing Rational Agents

- An agent is an entity that perceives and acts.
- A rational agent selects actions that maximize its utility function.
- Characteristics of the percepts, environment, and action space dictate techniques for selecting rational actions.
- This course is about:
 - General AI techniques for a variety of problem types
 - Learning to recognize when and how a new problem can be solved with an existing technique

Pacman as an Agent

[Image of Pacman game]

Reflex Agents

- Consider the past and present, but not future predictions, to select an action.
- Encode preferences as a function of the percepts and action

[Agent trials]
Announcements

• Important this week:
 • Python tutorial is online now (due next Wednesday)
 • Lab hours this Thursday from 1pm-3pm in Soda 275
 • Get your account forms in front after class

• Also important:
 • Sections start on Monday; you may change sections.
 The 5-6 pm section is nice and small (just added).
 • The Waiting list is almost empty. I don’t control
 enrollment. Contact Michael-David Sasson
 (msasson@cs) with questions; he makes decisions.

See You Thursday

Comic courtesy of Dan Gillick