Announcements

- Project 3:
 - Posted yesterday
 - Due in two weeks: Wednesday 3/4
Recap: MDPs

- Markov decision processes:
 - States S
 - Actions A
 - Transitions $P(s'|s,a)$ (or $T(s,a,s')$)
 - Rewards $R(s,a,s')$ (and discount γ)
 - Start state s_0

- Quantities:
 - Policy = map of states to actions
 - Episode = one run of an MDPs
 - Utility (Returns) = sum of discounted rewards
 - Values = expected future returns from a state
 - Q-Values = expected future returns from a q-state

Optimal Utilities

- The utility of a state s:
 $V^*(s) = \text{expected return starting in } s \text{ and acting optimally}$

- The utility of a q-state (s,a):
 $Q^*(s,a) = \text{expected return starting in } s, \text{ taking action } a \text{ and thereafter acting optimally}$

- The optimal policy:
 $\pi^*(s) = \text{optimal action from state } s$
The Bellman Equations

- One-step lookahead relationship amongst optimal utility values:

 Optimal rewards = maximize over first action, then follow the optimal policy

- Formally:

 $V^*(s) = \max_a Q^*(s, a)$

 $Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$

 $V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$

Review: Computing Actions

- Which action should we chose from state s:

 - Given optimal values V?

 $\arg\max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$

 - Given optimal q-values Q?

 $\arg\max_a Q^*(s, a)$

- Lesson: actions are easier to select from Q’s!
Value Iteration

- **Idea:**
 - Start with $V_0^*(s) = 0$, which we know is right (why?)
 - Given V_i^*, calculate the values for all states for depth $i+1$:

 $$V_{i+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$

 - This is called a value update or Bellman update
 - Repeat until convergence

- **Theorem:** will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

[DEMO]

Convergence*

- **Define the max-norm:** $||U|| = \max_s |U(s)|$

- **Theorem:** For any two approximations U and V
 $$||U^{t+1} - V^{t+1}|| \leq \gamma ||U^t - V^t||$$
 - I.e. any distinct approximations must get closer to each other, so, in particular, any approximation must get closer to the true U and value iteration converges to a unique, stable, optimal solution

- **Theorem:**
 $$||U^{t+1} - U^t|| < \epsilon, \Rightarrow ||U^{t+1} - U|| < 2\epsilon \gamma / (1 - \gamma)$$
 - I.e. once the change in our approximation is small, it must also be close to correct
Utilities for Fixed Policies

- Another basic operation: compute the utility of a state \(s \) under a fixed (perhaps non-optimal) policy

- Define the utility of a state \(s \), under a fixed policy \(\pi \):
 \[
 V^\pi(s) = \text{expected total discounted rewards starting in } s \text{ and following } \pi
 \]

- Recursive relation (one-step look-ahead / Bellman equation):
 \[
 V^\pi(s) = \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V^\pi(s')]
 \]

Policy Evaluation

- How do we calculate the V’s for a fixed policy?

- Idea one: turn recursive equations into updates
 \[
 V^\pi_0(s) = 0
 \]
 \[
 V^\pi_{i+1}(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V^\pi_i(s')]
 \]

- Idea two: it’s just a linear system; ask Matlab
Policy Iteration

- Alternative to value iteration:
 - Step 1: Policy evaluation: calculate utilities for a fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using one-step lookaheah with resulting converged (but not optimal!) utilities
 - Repeat steps until policy converges

- This is policy iteration
 - It’s still optimal!
 - Can converge faster under some conditions

Policy Iteration

- Policy evaluation: with fixed current policy π, find values with simplified Bellman updates:
 - Iterate until values converge

$$V^\pi_{i+1}(s) \leftarrow \sum_{s'} T(s, \pi_k(s), s') \left[R(s, \pi_k(s), s') + \gamma V^\pi_i(s') \right]$$

- Policy improvement: with fixed utilities, find the best action according to one-step look-ahead

$$\pi_{k+1}(s) = \arg \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^\pi_k(s') \right]$$

[DEMO]
Comparison

- In value iteration:
 - Every pass (or “backup”) updates both utilities (explicitly, based on current utilities) and policy (implicitly, based on current utilities)
 - Tracking the policy isn’t necessary; we take the max
 \[V_{i+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right] \]
- In policy iteration:
 - Several passes to update utilities with fixed policy
 - After policy is evaluated, a new policy is chosen
- Together, these are dynamic programming for MDPs

Asynchronous Value Iteration*

- In value iteration, we update every state in each iteration
- Actually, any sequences of Bellman updates will converge if every state is visited infinitely often
- In fact, we can update the policy as seldom or often as we like, and we will still converge
- Idea: Update states whose value we expect to change:
 If \(|V_{i+1}(s) - V_i(s)|\) is large then update predecessors of \(s\)
Reinforcement Learning

- Reinforcement learning:
 - Still have an MDP:
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model $T(s,a,s')$
 - A reward function $R(s,a,s')$
 - Still looking for a policy $\pi(s)$

- New twist: don't know T or R
 - I.e. don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Example: Animal Learning

- RL studied experimentally for more than 60 years in psychology
 - Rewards: food, pain, hunger, drugs, etc.
 - Mechanisms and sophistication debated

- Example: foraging
 - Bees learn near-optimal foraging plan in field of artificial flowers with controlled nectar supplies
 - Bees have a direct neural connection from nectar intake measurement to motor planning area
Passive Learning

- **Simplified task**
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - You are given a policy $\pi(s)$
 - **Goal:** learn the state values (and maybe the model)

- **In this case:**
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - We’ll get to action selection soon

Example: Direct Estimation

- **Episodes:**
 - $(1,1) \text{ up} -1$
 - $(1,2) \text{ up} -1$
 - $(1,2) \text{ up} -1$
 - $(1,3) \text{ right} -1$
 - $(2,3) \text{ right} -1$
 - $(3,3) \text{ right} -1$
 - $(3,2) \text{ up} -1$
 - $(3,3) \text{ right} -1$
 - $(4,3) \text{ exit} +100$
 - $(4,2) \text{ exit} -100$
 - $(3,3) \text{ right} -1$
 - $(1,1) \text{ up} -1$
 - $(1,2) \text{ up} -1$
 - $(1,3) \text{ right} -1$
 - $(2,3) \text{ right} -1$
 - $(3,3) \text{ right} -1$
 - $(3,2) \text{ up} -1$
 - $(3,3) \text{ right} -1$
 - $(4,3) \text{ exit} +100$
 - $(4,2) \text{ exit} -100$

- $\gamma = 1$, $R = -1$

- $U(1,1) \sim (92 + -106) / 2 = -7$
- $U(3,3) \sim (99 + 97 + -102) / 3 = 31.3$
Model-Based Learning

- In general, want to learn the optimal policy, not evaluate a fixed policy

- Idea: adaptive dynamic programming
 - Learn an initial model of the environment:
 - Solve for the optimal policy for this model (value or policy iteration)
 - Refine model through experience and repeat
 - Crucial: we have to make sure we actually learn about all of the model (the whole state space)

Model-Based Learning

- Idea:
 - Learn the model empirically (rather than values)
 - Solve the MDP as if the learned model were correct

- Empirical model learning
 - Simplest case:
 - Count how many of each s’ for each s,a
 - Divide by total times in s,a to give estimate of T(s,a,s’)
 - Discover R(s,a,s’) the first time we experience (s,a,s’)
 - More complex learners are possible (e.g. if we know that all squares have related action outcomes like “stationary noise”)

20

21
Example: Model-Based Learning

- **Episodes:**

 | (1,1) up -1 | (1,1) up -1 |
 | (1,2) up -1 | (1,2) up -1 |
 | (1,2) up -1 | (1,3) right -1 |
 | (1,3) right -1 | (2,3) right -1 |
 | (2,3) right -1 | (3,3) right -1 |
 | (3,3) right -1 | (3,2) up -1 |
 | (3,2) up -1 | (4,2) exit -100 |
 | (3,3) right -1 | (done) |
 | (4,3) exit +100 | (done) |

\[
T(<3,3>, \text{right}, <4,3>) = \frac{1}{3} \\
T(<2,3>, \text{right}, <3,3>) = \frac{2}{2}
\]

Example: Greedy ADP

- Imagine we find the lower path to the good exit first.
- Some states will never be visited following this policy from (1,1).
- We'll keep re-using this policy because following it never collects the regions of the model we need to learn the optimal policy.
What Went Wrong?

- Problem with following optimal policy for current model:
 - Never learn about better regions of the space if current policy neglects them

- Fundamental tradeoff: exploration vs. exploitation
 - Exploration: must take actions with suboptimal estimates to discover new rewards and increase eventual utility
 - Exploitation: once the true optimal policy is learned, exploration reduces utility
 - Systems must explore in the beginning and exploit in the limit

Model-Free Learning

- Big idea: why bother learning T?
 - Update V each time we experience a transition
 - Frequent outcomes will contribute more updates (over time)

- Temporal difference learning (TD)
 - Policy still fixed!
 - Move values toward value of whatever successor occurs

$$V^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, a, s') + \gamma V^\pi(s')]$$

$$sample = R(s, a, s') + \gamma V^\pi(s')$$

$$V^\pi(s) \leftarrow V^\pi(s) + \alpha(sample - V^\pi(s))$$
Example: Passive TD

\[V^\pi(s) \leftarrow V^\pi(s) + \alpha \left[R(s, a, s') + \gamma V^\pi(s') - V^\pi(s) \right] \]

Problems with TD Value Learning

- TD value leaning is model-free for policy evaluation
- However, if we want to turn our value estimates into a policy, we’re sunk:

\[\pi(s) = \arg \max_a Q^*(s, a) \]

\[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

- Idea: learn Q-values directly
- Makes action selection model-free too!