
1

CS 188: Artificial Intelligence

Spring 2009

Lecture 10: Markov Decision Processes II

2/19/2009

John DeNero – UC Berkeley

Slides adapted from Dan Klein, Stuart Russell or Sutton & Barto

Announcements

 Project 3:

 Posted yesterday

 Due in two weeks: Wednesday 3/4

2

Recap: MDPs

 Markov decision processes:

 States S

 Actions A

 Transitions P(s’|s,a) (or T(s,a,s’))

 Rewards R(s,a,s’) (and discount)

 Start state s0

 Quantities:

 Policy = map of states to actions

 Episode = one run of an MDPs

 Utility (Returns) = sum of discounted rewards

 Values = expected future returns from a state

 Q-Values = expected future returns from a q-state 3

Optimal Utilities

 The utility of a state s:

V*(s) = expected return
starting in s and acting
optimally

 The utility of a q-state (s,a):

Q*(s,a) = expected return
starting in s, taking
action a and thereafter
acting optimally

 The optimal policy:
*(s) = optimal action from
state s 4

a

s

s’

s, a

(s,a,s’) is a

transition
s,a,s’

s is a

state

(s, a) is a

q-state

3

The Bellman Equations

 One-step lookahead relationship

amongst optimal utility values:

Optimal rewards = maximize over first

action, then follow the optimal policy

 Formally:

a

s

s, a

s,a,s’

s’

5

Review: Computing Actions

 Which action should we chose from state s:

 Given optimal values V?

 Given optimal q-values Q?

 Lesson: actions are easier to select from Q’s!

6

4

Value Iteration

 Idea:
 Start with V0

*(s) = 0, which we know is right (why?)

 Given Vi
*, calculate the values for all states for depth i+1:

 This is called a value update or Bellman update

 Repeat until convergence

 Theorem: will converge to unique optimal values
 Basic idea: approximations get refined towards optimal values

 Policy may converge long before values do

[DEMO]

Convergence*

 Define the max-norm:

 Theorem: For any two approximations U and V

 I.e. any distinct approximations must get closer to each other, so,
in particular, any approximation must get closer to the true U and
value iteration converges to a unique, stable, optimal solution

 Theorem:

 I.e. once the change in our approximation is small, it must also
be close to correct

8

5

Utilities for Fixed Policies

 Another basic operation: compute

the utility of a state s under a fixed

(perhaps non-optimal) policy

 Define the utility of a state s, under a

fixed policy :

V (s) = expected total

discounted rewards

starting in s and following

 Recursive relation (one-step look-

ahead / Bellman equation):

(s)

s

s, (s)

s, (s),s’

s’

9

Policy Evaluation

 How do we calculate the V’s for a fixed policy?

 Idea one: turn recursive equations into updates

 Idea two: it’s just a linear system; ask Matlab

10

6

Policy Iteration

 Alternative to value iteration:

 Step 1: Policy evaluation: calculate utilities for a fixed

policy (not optimal utilities!) until convergence

 Step 2: Policy improvement: update policy using one-

step lookaheah with resulting converged (but not

optimal!) utilities

 Repeat steps until policy converges

 This is policy iteration

 It’s still optimal!

 Can converge faster under some conditions
11

Policy Iteration

 Policy evaluation: with fixed current policy , find values

with simplified Bellman updates:

 Iterate until values converge

 Policy improvement: with fixed utilities, find the best

action according to one-step look-ahead

[DEMO]

7

Comparison

 In value iteration:

 Every pass (or “backup”) updates both utilities

(explicitly, based on current utilities) and policy

(implicitly, based on current utilities)

 Tracking the policy isn’t necessary; we take the max

 In policy iteration:

 Several passes to update utilities with fixed policy

 After policy is evaluated, a new policy is chosen

 Together, these are dynamic programming for MDPs
13

Asynchronous Value Iteration*

 In value iteration, we update every state in each iteration

 Actually, any sequences of Bellman updates will

converge if every state is visited infinitely often

 In fact, we can update the policy as seldom or often as

we like, and we will still converge

 Idea: Update states whose value we expect to change:

If is large then update predecessors of s

8

Reinforcement Learning

 Reinforcement learning:

 Still have an MDP:

 A set of states s S

 A set of actions (per state) A

 A model T(s,a,s’)

 A reward function R(s,a,s’)

 Still looking for a policy (s)

 New twist: don’t know T or R

 I.e. don’t know which states are good or what the actions do

 Must actually try actions and states out to learn

[DEMO]

15

Example: Animal Learning

 RL studied experimentally for more than 60

years in psychology

 Rewards: food, pain, hunger, drugs, etc.

 Mechanisms and sophistication debated

 Example: foraging

 Bees learn near-optimal foraging plan in field of

artificial flowers with controlled nectar supplies

 Bees have a direct neural connection from nectar

intake measurement to motor planning area

16

9

Passive Learning

 Simplified task
 You don’t know the transitions T(s,a,s’)

 You don’t know the rewards R(s,a,s’)

 You are given a policy (s)

 Goal: learn the state values (and maybe the model)

 In this case:

 No choice about what actions to take

 Just execute the policy and learn from experience

 We’ll get to action selection soon

18

Example: Direct Estimation

 Episodes:

x

y

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)
U(1,1) ~ (92 + -106) / 2 = -7

U(3,3) ~ (99 + 97 + -102) / 3 = 31.3

= 1, R = -1

+100

-100

19

10

Model-Based Learning

 In general, want to learn the optimal policy, not

evaluate a fixed policy

 Idea: adaptive dynamic programming

 Learn an initial model of the environment:

 Solve for the optimal policy for this model (value or

policy iteration)

 Refine model through experience and repeat

 Crucial: we have to make sure we actually learn

about all of the model (the whole state space)

20

Model-Based Learning

 Idea:

 Learn the model empirically (rather than values)

 Solve the MDP as if the learned model were correct

 Empirical model learning

 Simplest case:

 Count how many of each s’ for each s,a

 Divide by total times in s,a to give estimate of T(s,a,s’)

 Discover R(s,a,s’) the first time we experience (s,a,s’)

 More complex learners are possible (e.g. if we know

that all squares have related action outcomes like

“stationary noise”)

21

11

Example: Model-Based Learning

 Episodes:

x

y

T(<3,3>, right, <4,3>) = 1 / 3

T(<2,3>, right, <3,3>) = 2 / 2

+100

-100

= 1

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

22

Example: Greedy ADP

 Imagine we find the lower

path to the good exit first

 Some states will never be

visited following this policy

from (1,1)

 We’ll keep re-using this

policy because following it

never collects the regions

of the model we need to

learn the optimal policy

? ?

23

12

What Went Wrong?

 Problem with following optimal
policy for current model:
 Never learn about better regions

of the space if current policy
neglects them

 Fundamental tradeoff:
exploration vs. exploitation
 Exploration: must take actions

with suboptimal estimates to
discover new rewards and
increase eventual utility

 Exploitation: once the true
optimal policy is learned,
exploration reduces utility

 Systems must explore in the
beginning and exploit in the limit

? ?

24

Model-Free Learning

 Big idea: why bother learning T?

 Update V each time we experience a transition

 Frequent outcomes will contribute more updates
(over time)

 Temporal difference learning (TD)

 Policy still fixed!

 Move values toward value of whatever

successor occurs

a

s

s, a

s,a,s’

s’

25

13

Example: Passive TD

Take = 1, = 0.5

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

26

Problems with TD Value Learning

 TD value leaning is model-free for

policy evaluation

 However, if we want to turn our value

estimates into a policy, we’re sunk:

 Idea: learn Q-values directly

 Makes action selection model-free too!

a

s

s, a

s,a,s’

s’

27

