CS 188: Atrtificial Intelligence
Spring 2009

Lecture 10: Markov Decision Processes Il
2/19/2009

John DeNero—UC Berkeley

Slides adapted from Dan Klein, Stuart Russell or Sutton & Barto

Announcements

* Project 3:
» Posted yesterday
» Due intwo weeks: Wednesday 3/4

Recap: MDPs

= Markov decision processes:
= States S
= Actions A
» Transitions P(s’[s,a) (or T(s,a,s’))
» Rewards R(s,a,s’) (and discounty)
= Start state s

= Quantities:
» Policy = map of states to actions
= Episode = one run of an MDPs
Utility (Returns) = sum of discounted rewards
» Values = expected future returns from a state
» Q-Values = expected future returns from a g-state

Optimal Utilities

= The utility of a state s:

V’(s) = expected return sisa
starting in s and acting state
optimally

o (s,a)isa
» The utility of a g-state (s,a): g-state

Q’(s,a) = expected return o (s.a,5)isa

starting in s, taking < tra’njsition

action a and thereafter
acting optimally

» The optimal policy:
n'(s) = optimal action from
state s 4

The Bellman Equations

» One-step lookahead relationship
amongst optimal utility values:

Optimal rewards = maximize over first g
action, then follow the optimal policy

= Formally:
V*(s) = max Q*(s,a)

Q*(s,a) =Y _T(s,a, s") [R(s, a, s+ ’yV*(s’)]

V*(s) = max Z T(s,a,s") {R(s, a,s) +~ V*(.s’)}

S

Review: Computing Actions

= \Which action should we chose from state s:
= Given optimal values V?

arg maxZT(s, a,s)[R(s,a,s) +~V*(s)]

s’

= Given optimal g-values Q?

arg max Q*(s,a)
a

= | esson: actions are easier to select from Q’s!

Value Iteration

» |dea:
= Start with Vy'(s) = 0, which we know is right (why?)
= GivenV/, calculate the values for all states for depth i+1:

Vig1(s) m(%aXZT(s, a,s’) {R(s,a,s") + 'yVi(s’)}

= This is called a value update or Bellman update
= Repeat until convergence

» Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

[DEMO]

Convergence*

» Define the max-norm: ||U|| = maxs |U(s)]

» Theorem: For any two approximations U and V
U - VI <y Ut - VY|
= |.e.any distinct approximations must get closer to each other, so,

in particular, any approximation must get closer to the true U and
value iteration converges to a unique, stable, optimal solution

= Theorem:
(UL —UY| < e, = ([UHL —U|| < 2¢7/(1 =)

= |.e.once the change in our approximation is small, it must also
be close to correct

Utilities for Fixed Policies

= Another basic operation: compute
the utility of a state s under a fixed
(perhaps non-optimal) policy

= Define the utility of a state s, under a
fixed policy
V7(s) = expected total
discounted rewards
starting in s and following = "

= Recursive relation (one-step look-
ahead/ Bellman equation):

VT(s) =3 T(s,m(s),s)R(s,m(s),s") + V(5]

s

Policy Evaluation

» How do we calculate the V’s for a fixed policy?

= |dea one: turn recursive equations into updates

Vg(s) =0
Vi () — X T(s, m(s), 8 R(s, m(s),) + V()

» |dea two: it’s just a linear system; ask Matlab

10

Policy Iteration

= Alternative to value iteration:

= Step 1: Policy evaluation: calculate utilities for a fixed
policy (not optimal utilities!) until convergence

= Step 2: Policy improvement: update policy using one-
step lookaheah with resulting converged (but not
optimal!) utilities

= Repeat steps until policy converges

» Thisis policy iteration
» |t's still optimal!

= Can converge faster under some conditions
11

Policy Iteration

= Policy evaluation: with fixed current policy =, find values
with simplified Bellman updates:
= |terate until values converge

Vg (s) — DT (s, mi(s), ") |R(s,mi(s),8') 4+~ V™ ()]

= Policy improvement: with fixed utilities, find the best
action according to one-step look-ahead

Tr41(s) = arg (EnaxZT(s, a,s’) [R(s,a, s + m/V’T!«-(s")}
s

[DEMO]

Comparison

= |n value iteration:

= Every pass (or “backup”) updates both utilities
(explicitly, based on current utilities) and policy
(implicitly, based on current utilities)

= Tracking the policy isn’t necessary; we take the max
Vig1(s) — max Y 7(s,a,8") [R(s,a,") + 7 Vi(s")]
s’

* |n policy iteration:
= Several passes to update utilities with fixed policy
= After policy is evaluated, a new policy is chosen

= Together, these are dynamic programming for MDPs
13

Asynchronous Value Iteration*

» In value iteration, we update every state in each iteration

= Actually, any sequences of Bellman updates will
converge if every state is visited infinitely often

» In fact, we can update the policy as seldom or often as
we like, and we will still converge

» |dea: Update states whose value we expect to change:
If |V..(s)-V.(s)| is large then update predecessors of s

Reinforcement Learning

» Reinforcement learning:
= Stillhave an MDP:
= Asetofstatess € S
= A setof actions (per state) A /
= A model T(s,a,s’)

= Areward function R(s,a,s’) [DEMO]
= Stilllooking for a policy n(s)

» New twist: don’tknow T or R
= |.e. don’'t know which states are good or what the actions do
= Must actually try actions and states out to learn

15

Example: Animal Learning

» RL studied experimentally for more than 60
years in psychology
» Rewards: food, pain, hunger, drugs, etc.
» Mechanismsand sophistication debated

= Example: foraging
» Bees learn near-optimal foraging plan in field of
artificial flowers with controlled nectar supplies
» Bees have a direct neural connection from nectar
intake measurementto motor planning area

16

Passive Learning

: - ===

= Simplified task ' . '
» You don’t know the transitions T(s,a,s’) =
* You don’t know the rewards R(s,a,s’) ' L ol ol

1 2 3

= You are given a policy n(s)
» Goal: learn the state values (and maybe the model)

* |n this case:
» No choice about what actions to take
= Just execute the policy and learn from experience
= We’'llget to action selection soon

18

Example: Direct Estimation

y

= Episodes: i Ehnatl Mmatl S [
1,1)up-1 1,1)up-1) ' ' 100
1,2)up-1 1,2)up-1
(1,2)up-1 (1,3)right-1 1 f -— | - | -
(1,3)right-1 (2,3)right -1
(2,3) right -1 (3,3) right -1 ! 2 ’ 4
(3,3)right-1 (3,2)up-1 y=1,R=-1
(3,2)up-1 (4,2) exit-100
(3:3) right -1 (done) U(L,1) ~ (92 +-106)/ 2 = -7
(4,3) exit +100
(done) U@3,3)~(99+97 +-102)/3=31.3

19

Model-Based Learning

= |n general, want to learn the optimal policy, not
evaluate a fixed policy

» |dea: adaptive dynamic programming
= Learn an initial model of the environment:
= Solve for the optimal policy for this model (value or
policy iteration)
» Refine model through experience and repeat
= Crucial: we have to make sure we actually learn
about all of the model (the whole state space)

20

Model-Based Learning

= |dea:
= Learn the model empirically (rather than values)
= Solve the MDP as if the learned model were correct

= Empirical model learning

= Simplestcase:
= Count how many of each s’ for each s,a
= Divide by total times in s,a to give estimate of T(s,a,s’)
= Discover R(s,a,s’) the first time we experience (s,a,s’)
»= More complex learners are possible (e.g. if we know
that all squares have related action outcomes like

“stationary noise”)
21

10

Example: Model-Based Learning

= Episodes:
1,)up-1 1,1 up-1
1,2)up-1 1,2)up-1
1,2)up-1 (1,3) right-1
(1,3) right-1 (2,3) right-1
(2,3) right-1 (3,3) right-1
(3,3) right-1 (3,2)up-1
(3,2)up-1 (4,2) exit-100
(3,3) right-1 (done)
(4,3) exit+100
(done)

y

3 — — — +100!
2 ' ' -100
1 f — o —

T(<3,3>,right, <4,3>)=1/3
T(<2,3>,right, <3,3>) =2 /2

22

Example: Greedy ADP

* Imagine we find the lower
path to the good exit first

= Some states will never be
visited following this policy
from (1,1)

= We'llkeep re-using this
policy because following it
never collects the regions
of the model we need to
learn the optimal policy

sl 2| 2| -lE
T
- - .

11

What Went Wrong?

= Problem with following optimal
policy for current model:

= Neverlearn about better regions

of the space if current policy 2 ?

neglects them : = 1O
* Fundamental tradeoff: 2 U =i

exploration vs. exploitation 4
= Exploration: must take actions T

with suboptimal estimates to 1 - -

discover new rewards and J

increase eventual utility ; ; ;)

= Exploitation: once the true
optimal policy is learned,
exploration reduces utility

» Systems must explore inthe
beginning and exploit in the limit

Model-Free Learning

= Bigidea: why bother learning T?
= Update V eachtime we experience atransition

= Frequentoutcomes will contribute more updates
(overtime)

= Temporal difference learning (TD) }
= Policy still fixed!
= Move valuestoward value of whatever
Successoroccurs

V7T(s) « Y T(s,7(s),s)[R(s,a,s") + V7 (s)]

B

sample = R(s,a,s") +yV7(s)

VT(s) «— V™(s) + a(sample — V™ (s)) -

12

Example: Passive TD

VT(s) — V™(s) + « {R(s,a,)+ AVT(s) — Vﬁ(s)}

1,)up-1 1,1 up-1 N [I

(1.2)up-1 (1.2)up-1 | t =
1,2)up-1 (1,3) right-1 L I N [y [y
(1,3) right-1 (2,3)right-1 oo
(2,3) right-1 (3,3) right-1 3
(3,3) right-1 (3,2)up-1
(3,2)up-1 (4,2) exit-100 a
(3,3) right-1 (done)
(4,3) exit+100 1
(done)

Takey=1,a=0.5 6

1 2 3 4

Problems with TD Value Learning

»= TD value leaning is model-free for
policy evaluation

= However, if we want to turn our value o
estimates into a policy, we're sunk:

w(s) = argmax Q*(s,a)

Q*(s,a) = ZT(S, a,s’) [R(s,a, s+ 'yV*(s’)]

» |dea: learn Q-values directly

= Makes action selection model-free too!
27

13

