
1

CS 188: Artificial Intelligence

Spring 2009

Lecture 10: Markov Decision Processes II

2/19/2009

John DeNero – UC Berkeley

Slides adapted from Dan Klein, Stuart Russell or Sutton & Barto

Announcements

 Project 3:

 Posted yesterday

 Due in two weeks: Wednesday 3/4

2

Recap: MDPs

 Markov decision processes:

 States S

 Actions A

 Transitions P(s’|s,a) (or T(s,a,s’))

 Rewards R(s,a,s’) (and discount)

 Start state s0

 Quantities:

 Policy = map of states to actions

 Episode = one run of an MDPs

 Utility (Returns) = sum of discounted rewards

 Values = expected future returns from a state

 Q-Values = expected future returns from a q-state 3

Optimal Utilities

 The utility of a state s:

V*(s) = expected return
starting in s and acting
optimally

 The utility of a q-state (s,a):

Q*(s,a) = expected return
starting in s, taking
action a and thereafter
acting optimally

 The optimal policy:
*(s) = optimal action from
state s 4

a

s

s’

s, a

(s,a,s’) is a

transition
s,a,s’

s is a

state

(s, a) is a

q-state

3

The Bellman Equations

 One-step lookahead relationship

amongst optimal utility values:

Optimal rewards = maximize over first

action, then follow the optimal policy

 Formally:

a

s

s, a

s,a,s’

s’

5

Review: Computing Actions

 Which action should we chose from state s:

 Given optimal values V?

 Given optimal q-values Q?

 Lesson: actions are easier to select from Q’s!

6

4

Value Iteration

 Idea:
 Start with V0

*(s) = 0, which we know is right (why?)

 Given Vi
*, calculate the values for all states for depth i+1:

 This is called a value update or Bellman update

 Repeat until convergence

 Theorem: will converge to unique optimal values
 Basic idea: approximations get refined towards optimal values

 Policy may converge long before values do

[DEMO]

Convergence*

 Define the max-norm:

 Theorem: For any two approximations U and V

 I.e. any distinct approximations must get closer to each other, so,
in particular, any approximation must get closer to the true U and
value iteration converges to a unique, stable, optimal solution

 Theorem:

 I.e. once the change in our approximation is small, it must also
be close to correct

8

5

Utilities for Fixed Policies

 Another basic operation: compute

the utility of a state s under a fixed

(perhaps non-optimal) policy

 Define the utility of a state s, under a

fixed policy :

V (s) = expected total

discounted rewards

starting in s and following

 Recursive relation (one-step look-

ahead / Bellman equation):

(s)

s

s, (s)

s, (s),s’

s’

9

Policy Evaluation

 How do we calculate the V’s for a fixed policy?

 Idea one: turn recursive equations into updates

 Idea two: it’s just a linear system; ask Matlab

10

6

Policy Iteration

 Alternative to value iteration:

 Step 1: Policy evaluation: calculate utilities for a fixed

policy (not optimal utilities!) until convergence

 Step 2: Policy improvement: update policy using one-

step lookaheah with resulting converged (but not

optimal!) utilities

 Repeat steps until policy converges

 This is policy iteration

 It’s still optimal!

 Can converge faster under some conditions
11

Policy Iteration

 Policy evaluation: with fixed current policy , find values

with simplified Bellman updates:

 Iterate until values converge

 Policy improvement: with fixed utilities, find the best

action according to one-step look-ahead

[DEMO]

7

Comparison

 In value iteration:

 Every pass (or “backup”) updates both utilities

(explicitly, based on current utilities) and policy

(implicitly, based on current utilities)

 Tracking the policy isn’t necessary; we take the max

 In policy iteration:

 Several passes to update utilities with fixed policy

 After policy is evaluated, a new policy is chosen

 Together, these are dynamic programming for MDPs
13

Asynchronous Value Iteration*

 In value iteration, we update every state in each iteration

 Actually, any sequences of Bellman updates will

converge if every state is visited infinitely often

 In fact, we can update the policy as seldom or often as

we like, and we will still converge

 Idea: Update states whose value we expect to change:

If is large then update predecessors of s

8

Reinforcement Learning

 Reinforcement learning:

 Still have an MDP:

 A set of states s S

 A set of actions (per state) A

 A model T(s,a,s’)

 A reward function R(s,a,s’)

 Still looking for a policy (s)

 New twist: don’t know T or R

 I.e. don’t know which states are good or what the actions do

 Must actually try actions and states out to learn

[DEMO]

15

Example: Animal Learning

 RL studied experimentally for more than 60

years in psychology

 Rewards: food, pain, hunger, drugs, etc.

 Mechanisms and sophistication debated

 Example: foraging

 Bees learn near-optimal foraging plan in field of

artificial flowers with controlled nectar supplies

 Bees have a direct neural connection from nectar

intake measurement to motor planning area

16

9

Passive Learning

 Simplified task
 You don’t know the transitions T(s,a,s’)

 You don’t know the rewards R(s,a,s’)

 You are given a policy (s)

 Goal: learn the state values (and maybe the model)

 In this case:

 No choice about what actions to take

 Just execute the policy and learn from experience

 We’ll get to action selection soon

18

Example: Direct Estimation

 Episodes:

x

y

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)
U(1,1) ~ (92 + -106) / 2 = -7

U(3,3) ~ (99 + 97 + -102) / 3 = 31.3

= 1, R = -1

+100

-100

19

10

Model-Based Learning

 In general, want to learn the optimal policy, not

evaluate a fixed policy

 Idea: adaptive dynamic programming

 Learn an initial model of the environment:

 Solve for the optimal policy for this model (value or

policy iteration)

 Refine model through experience and repeat

 Crucial: we have to make sure we actually learn

about all of the model (the whole state space)

20

Model-Based Learning

 Idea:

 Learn the model empirically (rather than values)

 Solve the MDP as if the learned model were correct

 Empirical model learning

 Simplest case:

 Count how many of each s’ for each s,a

 Divide by total times in s,a to give estimate of T(s,a,s’)

 Discover R(s,a,s’) the first time we experience (s,a,s’)

 More complex learners are possible (e.g. if we know

that all squares have related action outcomes like

“stationary noise”)

21

11

Example: Model-Based Learning

 Episodes:

x

y

T(<3,3>, right, <4,3>) = 1 / 3

T(<2,3>, right, <3,3>) = 2 / 2

+100

-100

= 1

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

22

Example: Greedy ADP

 Imagine we find the lower

path to the good exit first

 Some states will never be

visited following this policy

from (1,1)

 We’ll keep re-using this

policy because following it

never collects the regions

of the model we need to

learn the optimal policy

? ?

23

12

What Went Wrong?

 Problem with following optimal
policy for current model:
 Never learn about better regions

of the space if current policy
neglects them

 Fundamental tradeoff:
exploration vs. exploitation
 Exploration: must take actions

with suboptimal estimates to
discover new rewards and
increase eventual utility

 Exploitation: once the true
optimal policy is learned,
exploration reduces utility

 Systems must explore in the
beginning and exploit in the limit

? ?

24

Model-Free Learning

 Big idea: why bother learning T?

 Update V each time we experience a transition

 Frequent outcomes will contribute more updates
(over time)

 Temporal difference learning (TD)

 Policy still fixed!

 Move values toward value of whatever

successor occurs

a

s

s, a

s,a,s’

s’

25

13

Example: Passive TD

Take = 1, = 0.5

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

26

Problems with TD Value Learning

 TD value leaning is model-free for

policy evaluation

 However, if we want to turn our value

estimates into a policy, we’re sunk:

 Idea: learn Q-values directly

 Makes action selection model-free too!

a

s

s, a

s,a,s’

s’

27

