Announcements

- **Project 3:**
 - Due a week from yesterday
 - Submission will be enabled tomorrow

- **Written Assignment 2:**
 - Posted later today or tomorrow
 - Due in lecture on Thursday 3/12
Reinforcement Learning

- Reinforcement learning:
 - Still have an MDP:
 - A set of states \(s \in S \)
 - A set of actions (per state) \(A \)
 - A model \(T(s,a,s') \)
 - A reward function \(R(s,a,s') \)
 - Still looking for a policy \(\pi(s) \)
 - New twist: don’t know \(T \) or \(R \)
 - I.e. don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn

The Story So Far: MDPs and RL

Things we know how to do:

- We can solve small MDPs exactly
- If we don’t know \(T(s,a,s') \), we can estimate it, then solve the MDP
- We can estimate values \(V^\pi(s) \) directly for a fixed policy \(\pi \).
- We can estimate \(Q^*(s,a) \) for the optimal policy while executing an exploration policy

Techniques:

- Value and policy iteration
- Adaptive dynamic programming
- Temporal difference learning
- Q-learning
Q-Learning

- Learn $Q^*(s,a)$ values
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: $Q(s, a)$
 - Consider your new sample estimate:
 $$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q^*(s', a') \right]$$
 $$\text{sample} = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$
 - Incorporate the new estimate into a running average:
 $$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha [\text{sample}]$$

Q-Learning Properties

- Will converge to optimal policy
 - If you explore enough
 - If you make the learning rate small enough
 - But not decrease it too quickly!
 - Basically doesn’t matter how you select actions (!)

- Neat property: learns optimal q-values while executing sub-optimal policies
Exploration / Exploitation

- Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With probability ε, act randomly
 - With probability 1-ε, act according to current policy

- Problems with random actions?
 - You do explore the space, but keep thrashing around once learning is done
 - Takes a long time to explore certain spaces
 - One solution: lower ε over time
 - Another solution: exploration functions

Exploration Functions

- When to explore
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established

- Exploration function
 - Takes a value estimate and a count, and returns an optimistic utility, e.g. \(f(u, n) = u + k/n \) (exact form not important)

 \[
 Q_{t+1}(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} Q_t(s', a')
 \]

 \[
 Q_{t+1}(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} f(Q_t(s', a'), N(s', a'))
 \]
The Problem with Q-Learning

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory

- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar states
 - This is a fundamental idea in machine learning, and we’ll see it over and over again

Example: Pacman

- Let’s say we discover through experience that this state is bad:

- In naïve q learning, we know nothing about this state or its q states:

- Or even this one!
Feature-Based Representations

- Solution: describe a (state, action) pair using a vector of features
 - Features are functions from q-states to real numbers that capture important properties of the state
- Simple features for the project:
 - Will I collide with the ghost?
 - Distance to closest dot
 - Does the action eat food?
 - Number of ghosts within one step
- A feature vector is just a Python dict
- For the algorithm you’re about to see to converge reliably, features should be between -1 and 1

Linear Feature Functions

- Using a feature representation, we can write a q function (or value function) for any state using a few weights:
 \[
 V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)
 \]
 \[
 Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a)
 \]
- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but be very different in value!
Function Approximation

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- Q-learning with linear q-functions:

 \[\text{correction} = [R(s, a, s') + \gamma \max_{a'} Q(s', a')] - Q(s, a) \]

 \[Q(s, a) \leftarrow Q(s, a) + \alpha \text{[correction]} \]

 \[w_i \leftarrow w_i + \alpha \text{[correction]} f_i(s, a) \]

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g. if something unexpectedly bad happens, disprefer all states with that state’s features

- Formal justification: online least squares

Example: Q-Pacman

\[Q(s, a) = 4.0 f_{\text{DOT}}(s, a) - 1.0 f_{\text{GST}}(s, a) \]

\[f_{\text{DOT}}(s, \text{NORTH}) = 0.5 \]

\[f_{\text{GST}}(s, \text{NORTH}) = 1.0 \]

\[Q(s, a) = +1 \]

\[R(s, a, s') = -500 \]

\[\text{correction} = -501 \]

\[w_{\text{DOT}} \leftarrow 4.0 + \alpha [-501] 0.5 \]

\[w_{\text{GST}} \leftarrow -1.0 + \alpha [-501] 1.0 \]

\[Q(s, a) = 3.0 f_{\text{DOT}}(s, a) - 3.0 f_{\text{GST}}(s, a) \]
Given examples: \((x_i, y_i)_{i=1 \ldots n}\)

Predict \(y_{n+1}\) given a new point \(x_{n+1}\)

Prediction: \(\hat{y}_i = w_0 + w_1 x_i\)

Prediction: \(\hat{y}_i = w_0 + w_1 x_{i,1} + w_2 x_{i,2}\)
Ordinary Least Squares (OLS)

Minimizing Error

\[
E(w) = \frac{1}{2} \sum_i \left(\sum_k f_k(x_i) w_k - y_i \right)^2
\]

\[
\frac{\partial E}{\partial w_m} = \sum_i \left(\sum_k f_k(x_i) w_k - y_i \right) f_m(x_i)
\]

\[
w_m \leftarrow w_m - \alpha \sum_i \left(\sum_k f_k(x_i) w_k - y_i \right) f_m(x_i)
\]

Approximate q update explained:

\[
w_m \leftarrow w_m - \alpha \text{[error]} f_m(s, a)
\]

\[
w_m \leftarrow w_m + \alpha \text{[correction]} f_m(s, a)
\]
What About Large Known MDPs

- Simulated Q-learning is a good bet
 - Q-learning storage is only $O(|S|*|A|)$: might be smaller than the MDP
 - Solving policy evaluation equations is $O(|S|^3)$
 - Every value iteration update to $V(s)$ is $O(|A|*|S|)$
 - A Q-learning update to $Q(s,a)$ is $O(|A|)$

- When simulating, you can make q-learning updates to any (s,a) in any order
Policy Search

- [DEMO – Helicopter]

- Idea: learn the policy that maximizes utility rather than the value that predicts returns

- Justification: exact values often don’t matter for making good decisions

Policy Search*

- Simplest policy search:
 - Start with an initial linear q-function based on features
 \[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]
 - Nudge each feature weight up and down and see if your policy is better than before

- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical
Policy Gradient Search*

- Policy Gradient Search:
 - Start with an initial linear q-function based on features
 \[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]
 - Compute the change in \(w \) that will increase utility the fastest -- gradient of utility with respect to \(w \)
 - After changing \(w \), you need to recompute gradient
- Problem:
 - The utility is not a continuous function of the parameters, because a small weight change can change the whole policy

Solution to discontinuous reward function:
 - Use a probabilistic policy:
 \[\pi_w(s) \propto e^{\sum_i w_i f_i(s, a)} \]
 - Turns out you can efficiently approximate the derivative of the returns with respect to the parameters \(w \) (details in the book, optional material)
 - Take uphill steps, recompute derivatives, etc.
Take a Deep Breath…

- We’re done with search and planning!

- Next, we’ll look at how to reason with probabilities
 - Diagnosis
 - Tracking objects through time
 - Complex interactions and domains
 - Pacman won’t know where the ghosts are!

- Last part of course: machine learning