Announcements

- Project 4 due tomorrow
 - Use up to two slip days
 - Issues with the autograder are resolved
 - What tracking multiple ghosts should look like

- Written assignment 4 posted
 - Shortest written assignment ever!
 - Due next Thursday at the beginning of lecture
 - Turn it in on time
General Naïve Bayes

- A general *naïve Bayes* model:
 - Y: label to be predicted
 - F_1, \ldots, F_n: features of each instance

\[
P(Y, F_1 \ldots F_n) = P(Y) \prod_i P(F_i | Y)
\]

- We only specify how each feature depends on the class
- Total number of parameters is *linear* in n

Example Naïve Bayes Models

- Bag of words for text
 - One feature for every word position in the document
 - All features *share* the same conditional distributions
 - Maximum likelihood estimates: word frequencies, by label

- Pixels for digit recognition
 - One feature for every pixel, indicating whether it is on (black)
 - Each pixel has a *different* conditional distribution
 - Maximum likelihood estimates: how often a pixel is on, by label
Naïve Bayes Classification

- Data: labeled instances, e.g. emails marked as spam/ham by a person
 - Divide into training, held-out and test

- Features are known for every training, held-out and test instance

- Estimation: count feature values in the training set and normalize to get maximum likelihood estimates of probabilities

- Smoothing (aka regularization): adjust estimates to account for unseen data

Laplace Smoothing

- Laplace’s estimate (extended):
 - Pretend you saw every outcome k extra times

$$P_{LAP,k}(x) = \frac{c(x) + k}{N + k|X|}$$

- What’s Laplace with $k = 0$?
- k is the strength of the prior

- Laplace for conditionals:
 - Smooth each condition:
 - Can be derived by dividing

$$P_{LAP,k}(x|y) = \frac{c(x, y) + k}{c(y) + k|X|}$$

$$P_{LAP,0}(X) = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

$$P_{LAP,1}(X) = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$

$$P_{LAP,100}(X) = \begin{pmatrix} 102 \\ 203 \end{pmatrix}$$
Linear Interpolation Smoothing

- Linear interpolation for conditional likelihoods
 - **Idea**: the conditional probability of a feature x given a label y should be close to the marginal probability of x
 - **Example**: A rare word like “interpolation” should be similarly rare in both ham and spam
 - **Procedure**: Collect relative frequency estimates of both conditional and marginal, then average

$$P_{ML}(x|y) = \frac{\text{count}(x, y)}{\text{count}(y)} \quad P_{ML}(x) = \frac{\text{count}(x)}{\text{total samples}}$$

$$P_{LIN}(x|y) = \alpha P_{ML}(x|y) + (1 - \alpha) P_{ML}(x)$$

- **Effect**: Features have odds ratios closer to 1

Real NB: Smoothing

- For real classification problems, smoothing is critical
- New odds ratios:

| Feature | $P(W|\text{ham}) / P(W|\text{spam})$ | $P(W|\text{spam}) / P(W|\text{ham})$ |
|----------|-------------------------------------|-------------------------------------|
| helvetica| 11.4 | 28.8 |
| seems | 10.8 | 28.4 |
| group | 10.2 | 27.2 |
| ago | 8.4 | 26.9 |
| areas | 8.3 | 26.5 |
| ... | | ... |

Do these make more sense?
Tuning on Held-Out Data

- Now we’ve got two kinds of unknowns
 - Parameters: \(P(F_i|Y) \) and \(P(Y) \)
 - Hyperparameters, like the amount of smoothing to do: \(k, \alpha \)

- Where to learn which unknowns
 - Learn parameters from training set
 - Must tune hyperparameters on different data (why?)
 - For each possible value of the hyperparameters, train and test on the held-out data
 - Choose the best value and do a final test on the test data

Baselines

- First task when classifying: get a baseline
 - Baselines are very simple “straw man” procedures
 - Help determine how hard the task is
 - Help know what a “good” accuracy is

- Weak baseline: most frequent label classifier
 - Gives all test instances whatever label was most common in the training set
 - E.g. for spam filtering, might label everything as spam
 - Accuracy might be very high if the problem is skewed

- When conducting real research, we usually use previous work as a (strong) baseline
Confidences from a Classifier

- The confidence of a classifier:
 - Posterior over the most likely label
 \[\text{confidence}(x) = \max_y P(y|x) \]
 - Represents how sure the classifier is of the classification
 - Any probabilistic model will have confidences
 - No guarantee confidence is correct

- Calibration
 - Strong calibration: confidence predicts accuracy rate
 - Weak calibration: higher confidences mean higher accuracy
 - What's the value of calibration?

Naïve Bayes Summary

- Bayes rule lets us do diagnostic queries with causal probabilities
- The naïve Bayes assumption takes all features to be independent given the class label
- We can build classifiers out of a naïve Bayes model using training data
- Smoothing estimates is important in real systems
- Confidences are useful when the classifier is calibrated
What to Do About Errors

- Problem: there’s still spam in your inbox
- Need more features—words aren’t enough!
 - Have you emailed the sender before?
 - Have 1K other people just gotten the same email?
 - Is the sending information consistent?
 - Is the email in ALL CAPS?
 - Do inline URLs point where they say they point?
 - Does the email address you by (your) name?

- Naïve Bayes models can incorporate a variety of features, but tend to do best in homogeneous cases (e.g. all features are word occurrences)

Features

- A feature is a function that signals a property of the input
 - Naïve Bayes: features are random variables & each value has conditional probabilities given the label.
 - Most classifiers: features are real-valued functions
 - Common special cases:
 - Indicator features take values 0 and 1 or -1 and 1
 - Count features return non-negative integers

- Features are anything you can think of for which you can write code to evaluate on an input
 - Many are cheap, but some are expensive to compute
 - Can even be the output of another classifier or model
 - Domain knowledge goes here!
Feature Extractors

- A feature extractor maps inputs to feature vectors
- Many classifiers take feature vectors as inputs
- Feature vectors usually very sparse, use sparse encodings (i.e. only represent non-zero keys)

Dear Sir.
First, I must solicit your confidence in this transaction, this is by virtue of its nature as being utterly confidential and top secret...

Generative vs. Discriminative

- Generative classifiers:
 - E.g. naïve Bayes
 - We build a causal model of all the variables, including observed X
 - We then query that model for causes, given evidence

- Discriminative classifiers:
 - No causal model, no Bayes rule, often no probabilities at all!
 - Try to predict the label Y directly from X
 - Loosely: mistake driven rather than model driven
Some (Vague) Biology

- Very loose inspiration: human neurons

Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

$$\text{activation}_{w}(x) = \sum_{i} w_{i} \cdot f_{i}(x)$$

- If the activation is:
 - Positive, output 1
 - Negative, output 0
Example: Spam

- Imagine 4 features:
 - Free (number of occurrences of “free”)
 - Money (occurrences of “money”)
 - BIAS (always has value 1)
 - the (occurrences of “the”)

\[
\begin{array}{c|c|c}
\text{x} & f(x) & w \\
\hline
\text{BIAS} : 1 & \text{BIAS} : -3 \\
\text{free} : 1 & \text{free} : 4 \\
\text{money} : 1 & \text{money} : 2 \\
\text{the} : 0 & \text{the} : 0 \\
\ldots & \ldots \\
\end{array}
\]

\[
\sum w_i \cdot f_i(x) = 3
\]

Binary Decision Rule

- In the space of feature vectors
 - Any weight vector is a hyperplane
 - One side corresponds to \(Y=1 \)
 - Other corresponds to \(Y=-1 \)

\[
\begin{array}{c|c|c}
w & \text{money} & \text{free} \\
\hline
\text{BIAS} : -3 & 2 & 1 \\
\text{free} : 4 & 1 & 0 \\
\text{money} : 2 & 0 & 1 \\
\text{the} : 0 & 0 & 0 \\
\ldots & \ldots & \ldots \\
\end{array}
\]

\[
f \cdot w = 0
\]
Binary Perceptron Update

- Start with zero weights
- For each training instance:
 - Classify with current weights
 \[y = \begin{cases}
 1 & \text{if } w \cdot f(x) \geq 0 \\
 -1 & \text{if } w \cdot f(x) < 0
 \end{cases} \]
 - If correct (i.e., \(y = y^* \)), no change!
 - If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if \(y^* \) is -1.
 \[w = w + y^* \cdot f \]

Multiclass Decision Rule

- If we have more than two classes:
 - Have a weight vector for each class
 - Calculate an activation for each class
 \[\text{activation}_w(x, y) = \sum_i w_{y,i} \cdot f_i(x) \]
 - Highest activation wins
 \[y = \arg \max_y (\text{activation}_w(x, y)) \]
Example

“win the vote”

\[\begin{align*}
\text{BIAS} & : -2 \\
\text{win} & : 4 \\
\text{game} & : 4 \\
\text{vote} & : 0 \\
\text{the} & : 0 \\
\ldots
\end{align*} \]

\[\begin{align*}
\text{BIAS} & : 1 \\
\text{win} & : 2 \\
\text{game} & : 0 \\
\text{vote} & : 4 \\
\text{the} & : 0 \\
\ldots
\end{align*} \]

\[\begin{align*}
\text{BIAS} & : 2 \\
\text{win} & : 0 \\
\text{game} & : 2 \\
\text{vote} & : 0 \\
\text{the} & : 0 \\
\ldots
\end{align*} \]

The Perceptron Update Rule

- Start with zero weights
- Pick up training instances one by one
- Classify with current weights

\[y = \arg \max_y w_y \cdot f(x) \]
\[= \arg \max_y \sum_i w_{y,i} \cdot f_i(x) \]

- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

\[w_y = w_y - f(x) \]
\[w_{y*} = w_{y*} + f(x) \]
Mistake-Driven Classification

- In naïve Bayes, parameters:
 - From data statistics
 - Have a causal interpretation
 - One pass through the data

- For the perceptron parameters:
 - From reactions to mistakes
 - Have a discriminative interpretation
 - Go through the data until held-out accuracy maxes out

Properties of Perceptrons

- Separability: some parameters get the training set perfectly correct

- Convergence: if the training is separable, perceptron will eventually converge (binary case)

- Mistake Bound: the maximum number of mistakes (binary case) related to the margin or degree of separability

 \[\text{mistakes} < \frac{1}{\delta^2} \]
Issues with Perceptrons

- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining isn’t quite as bad as overfitting, but is similar

- Regularization: if the data isn’t separable, weights might thrash around
 - Averaging weight vectors over time can help (averaged perceptron)

- Mediocre generalization: finds a “barely” separating solution