Announcements

- The Python tutorial (Project 0) was due...
- Project 1 (Search) is due next Wednesday
 - Find partners at end of lecture
 - Food search is hard; traveling salesman and ants
- Written assignment 1 will be out tomorrow
 - Printed copies will be handed out in section
 - Due Tuesday, February 10th at the beginning of lecture (or section the day before)
Today

- A* Graph Search Recap
- Constraint Satisfaction Problems

A* Review

- A* uses both backward costs g and forward estimate h: $f(n) = g(n) + h(n)$
- A* tree search is optimal with admissible heuristics (optimistic future cost estimates)
- Heuristic design is key: relaxed problems can help
A* Graph Search Gone Wrong

State space graph

Search tree

Consistency

The story on Consistency:
- Definition:
 \[\text{cost}(A \text{ to } C) + h(C) \geq h(A) \]
- Consequence in search tree:
 Two nodes along a path: \(N_A, N_C \)
 \[g(N_C) = g(N_A) + \text{cost}(A \text{ to } C) \]
 \[g(N_C) + h(C) \geq g(N_A) + h(A) \]
- The f value along a path never decreases
- Non-decreasing f means you’re optimal to every state (not just goals)
Optimality Summary

- **Tree search:**
 - A* optimal if heuristic is admissible (and non-negative)
 - Uniform Cost Search is a special case (h = 0)

- **Graph search:**
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)

- In general, natural admissible heuristics tend to be consistent

- Remember, costs are always positive in search!

Constraint Satisfaction Problems

- **Standard search problems:**
 - State is a “black box”: arbitrary data structure
 - Goal test: any function over states
 - Successor function can be anything

- **Constraint satisfaction problems (CSPs):**
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

- Simple example of a formal representation language

- Allows useful general-purpose algorithms with more power than standard search algorithms
Example: N-Queens

- **Formulation 1:**
 - Variables: X_{ij}
 - Domains: $\{0, 1\}$
 - Constraints:
 \[
 \forall i, j, k \quad (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\} \\
 \forall i, j, k \quad (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\} \\
 \forall i, j, k \quad (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\} \\
 \forall i, j, k \quad (X_{ij}, X_{i+k,j-k}) \in \{(0, 0), (0, 1), (1, 0)\} \\
 \sum_{i,j} X_{ij} = N
 \]

...there's an even better way! What is it?

Example: N-Queens

- **Formulation 2:**
 - Variables: Q_k
 - Domains: $\{11, 12, 13, \ldots \\}$
 - Constraints:
 \[
 \forall i, j \quad \text{non-threatening}(Q_i, Q_j) \\
 \forall i, j \quad (Q_i, Q_j) \in \{(11, 23), (11, 24), \ldots \}
 \]

...there’s an even better way! What is it?
Example: Map-Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domain: $D = \{\text{red, green, blue}\}$
- Constraints: adjacent regions must have different colors

 $$WA \neq NT$$

 $$(WA, NT) \in \{(\text{red, green}), (\text{red, blue}), (\text{green, red}), \ldots\}$$

- Solutions are assignments satisfying all constraints, e.g.:

 $$\{WA = \text{red}, NT = \text{green}, Q = \text{red},\$$
 $$NSW = \text{green}, V = \text{red}, SA = \text{blue}, T = \text{green}\}$$

Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!
Example: Cryptarithmetic

- Variables:
 - \(F \ T \ U \ W \ R \ O \ X_1 \ X_2 \ X_3 \)

- Domains:
 - \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}

- Constraints:
 - alldiff(\(F, T, U, W, R, O \))
 - \(O + O = R + 10 \cdot X_1 \)
 - \ldots \)

Example: Sudoku

- Variables:
 - Each open square

- Domains:
 - \{1,2,\ldots,9\}

- Constraints:
 - 9-way alldiff for each column
 - 9-way alldiff for each row
 - 9-way alldiff for each region
Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra
- An early example of a computation posed as a CSP

Look at all intersections
Adjacent intersections impose constraints on each other

Varieties of CSPs

- Discrete Variables
 - Finite domains
 - Size d means $O(d^d)$ complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Need a constraint language, e.g., $\text{StartJob}_1 + 5 < \text{StartJob}_3$
 - Linear constraints solvable, nonlinear undecidable

- Continuous variables
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods
 (see cs170 for a bit of this theory)
Varieties of Constraints

- Varieties of Constraints
 - Unary constraints involve a single variable (equiv. to shrinking domains):
 \[SA \neq green \]
 - Binary constraints involve pairs of variables:
 \[SA \neq WA \]
 - Higher-order constraints involve 3 or more variables:
 e.g., cryptarithmetic column constraints

- Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We’ll ignore these until we get to Bayes’ nets)

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Spreadsheets
- Transportation scheduling
- Factory scheduling
- Floorplanning

- Many real-world problems involve real-valued variables…
Standard Search Formulation

- Standard search formulation of CSPs (incremental)
- Let's start with the straightforward, dumb approach, then fix it
- States are defined by the values assigned so far
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints
- Simplest CSP ever: two bits, constrained to be equal

Search Methods

- What does BFS do?
- What does DFS do?
 - [demo]
- What's the obvious problem here?
- What's the slightly-less-obvious problem?
Backtracking Search

- **Idea 1:** Only consider a single variable at each point:
 - Variable assignments are commutative
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
 - How many leaves are there?

- **Idea 2:** Only allow legal assignments at each point
 - I.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to figure out whether a value is ok

- Depth-first search for CSPs with these two improvements is called backtracking search (useless name, really)
 - [ANIMATION]

- Backtracking search is the basic uninformed algorithm for CSPs

- Can solve n-queens for n ≈ 25

5 Minute Break

Courtesy of Dan Gillick
Backtracking Search

function \textsc{Backtracking-Search}(csp) returns solution/failure
 return \textsc{Recursive-Backtracking}([], csp)

function \textsc{Recursive-Backtracking}(assignment, csp) returns soln/failure
 if assignment is complete then return assignment
 var — \textsc{Select-Unassigned-Variable}(Variables[csp], assignment, csp)
 for each value in \textsc{Order-Domain-Values}(var, assignment, csp) do
 if value is consistent with assignment given \textsc{Constraints}[csp] then
 add \{ var = value \} to assignment
 result — \textsc{Recursive-Backtracking}(assignment, csp)
 if result ≠ failure then return result
 remove \{ var = value \} from assignment
 return failure

• What are the choice points?
Improving Backtracking

- General-purpose ideas can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?
 - Can we take advantage of problem structure?

Minimum Remaining Values

- Minimum remaining values (MRV):
 - Choose the variable with the fewest legal values

- Why min rather than max?
- Called most constrained variable
- “Fail-fast” ordering
Degree Heuristic

- Tie-breaker among MRV variables
- Degree heuristic:
 - Choose the variable participating in the most constraints on remaining variables

- Why most rather than fewest constraints?

Least Constraining Value

- Given a choice of variable:
 - Choose the least constraining value
 - The one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this!

- Why least rather than most?

- Combining these heuristics makes 1000 queens feasible
Forward Checking

- Idea: Keep track of remaining legal values for unassigned variables (using immediate constraints)
- Idea: Terminate when any variable has no legal values

Constraint Propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:
- NT and SA cannot both be blue!
- Why didn’t we detect this yet?
- \textit{Constraint propagation} repeatedly enforces constraints (locally)
Arc Consistency

- Simplest form of propagation makes each arc consistent
 - \(X \rightarrow Y \) is consistent iff for every value \(x \) there is some allowed \(y \)

 - If \(X \) loses a value, neighbors of \(X \) need to be rechecked!
 - Arc consistency detects failure earlier than forward checking
 - What’s the downside of arc consistency?
 - Can be run as a preprocessor or after each assignment

Arc Consistency

function AC-3(\(csp \)) returns the CSP, possibly with reduced domains
inputs: \(csp \), a binary CSP with variables \(\{ X_1, X_2, \ldots, X_n \} \)
local variables: \(queue \), a queue of arcs, initially all the arcs in \(csp \)
while \(queue \) is not empty do
 \((X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)\)
 if \(\text{REMOVE-INCONSISTENT-VALUES}(X_i, X_j) \) then
 for each \(X_k \) in Neighbors[\(X_i \)] do
 add \((X_k, X_i)\) to \(queue \)

function \(\text{REMOVE-INCONSISTENT-VALUES}(X_i, X_j) \) returns \(true \) iff succeeds
removed \(\leftarrow false \)
for each \(z \) in \(\text{DOMAIN}[X_i] \) do
 if no value \(y \) in \(\text{DOMAIN}[X_j] \) allows \((z, y)\) to satisfy the constraint \(X_i \rightarrow X_j \) then
 delete \(z \) from \(\text{DOMAIN}[X_i] \); removed \(\leftarrow true \)
return removed

- Runtime: \(O(n^2d^3) \), can be reduced to \(O(n^2d^2) \)
- … but detecting all possible future problems is NP-hard – why?
Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has \(c \) variables out of \(n \) total
- Worst-case solution cost is \(O((n/c)(d^c)) \), linear in \(n \)
 - E.g., \(n = 80, d = 2, c = 20 \)
 - \(2^{80} = 4 \text{ billion years at 10 million nodes/sec} \)
 - \((4)(2^{20}) = 0.4 \text{ seconds at 10 million nodes/sec} \)

Tree-Structured CSPs

- Choose a variable as root, order variables from root to leaves such that every node’s parent precedes it in the ordering
- For \(i = n : 2 \), apply RemoveInconsistent(Parent(\(X_i \)), \(X_i \))
- For \(i = 1 : n \), assign \(X_i \) consistently with Parent(\(X_i \))
- Runtime: \(O(n \ d^2) \)
Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in $O(n d^2)$ time!
 - Compare to general CSPs, where worst-case time is $O(d^n)$
 - This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime $O((d^2) (n-c) d^2)$, very fast for small c
Iterative Algorithms for CSPs

- Greedy and local methods typically work with “complete” states, i.e., all variables assigned

- To apply to CSPs:
 - Allow states with unsatisfied constraints
 - Operators *reassign* variable values

- Variable selection: randomly select any conflicted variable

- Value selection by min-conflicts heuristic:
 - Choose value that violates the fewest constraints
 - I.e., hill climb with \(h(n) = \text{total number of violated constraints} \)

Example: 4-Queens

- States: 4 queens in 4 columns \((4^4 = 256 \text{ states}) \)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: \(h(n) = \text{number of attacks} \)
Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $n = 10,000,000$)

- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio $R = \frac{\text{number of constraints}}{\text{number of variables}}$

Summary

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values

- Backtracking = depth-first search with one legal variable assigned per node

- Variable ordering and value selection heuristics help significantly

- Forward checking prevents assignments that guarantee later failure

- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies

- The constraint graph representation allows analysis of problem structure

- Tree-structured CSPs can be solved in linear time

- Iterative min-conflicts is usually effective in practice
Local Search Methods

- Queue-based algorithms keep fallback options (backtracking)
- Local search: improve what you have until you can’t make it better
- Generally much more efficient (but incomplete)

Types of Problems

- Planning problems:
 - We want a path to a solution (examples?)
 - Usually want an optimal path
 - *Incremental formulations*

- Identification problems:
 - We actually just want to know what the goal is (examples?)
 - Usually want an optimal goal
 - *Complete-state formulations*
 - Iterative improvement algorithms
Hill Climbing

- Simple, general idea:
 - Start wherever
 - Always choose the best neighbor
 - If no neighbors have better scores than current, quit

- Why can this be a terrible idea?
 - Complete?
 - Optimal?

- What’s good about it?

Hill Climbing Diagram

- Random restarts?
- Random sideways steps?
Simulated Annealing

- **Idea:** Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

```python
function SIMULATED-ANNEALING( problem, schedule) returns a solution state
  inputs: problem, a problem
           schedule, a mapping from time to "temperature"
  local variables: current, a node
                  next, a node
                  T, a "temperature" controlling prob. of downward steps

  current ← MAKE-NODE(INITIAL-STATE[problem])
  for t ← 1 to ∞ do
    T ← schedule[t]
    if T = 0 then return current
    next ← a randomly selected successor of current
    ΔE ← VALUE[next] − VALUE[current]
    if ΔE > 0 then current ← next
    else current ← next only with probability e^ΔE/T
```

Simulated Annealing

- **Theoretical guarantee:**
 - If T decreased slowly enough, will converge to optimal state!

- **Is this an interesting guarantee?**

- **Sounds like magic, but reality is reality:**
 - The more downhill steps you need to escape, the less likely you are to every make them all in a row
 - People think hard about *ridge operators* which let you jump around the space in better ways
Beam Search

- Like greedy search, but keep K states at all times:

 ![Greedy Search](image1)
 ![Beam Search](image2)

- Variables: beam size, encourage diversity?
- The best choice in MANY practical settings
- Complete? Optimal?
- What criteria to order nodes by?