Announcements

- The Python tutorial (Project 0) was due...
- Project 1 (Search) is due next Wednesday
 - Find partners at end of lecture
 - Food search is hard; traveling salesman and ants
- Written assignment 1 will be out tomorrow
 - Printed copies will be handed out in section
 - Due Tuesday, February 10th at the beginning of lecture (or section the day before)

Today

- A* Graph Search Recap
- Constraint Satisfaction Problems

A* Review

- A* uses both backward costs g and forward estimate h: $f(n) = g(n) + h(n)$
- A* tree search is optimal with admissible heuristics (optimistic future cost estimates)
- Heuristic design is key: relaxed problems can help

A* Graph Search Gone Wrong

Consistency

The story on Consistency:
- Definition: $\text{cost}(A \text{ to } C) + h(C) \geq h(A)$
- Consequence in search tree:
 - Two nodes along a path: N_a, N_c:
 - $g(N_a) = g(N_a) + \text{cost}(A \text{ to } C)$
 - $g(N_c) + h(C) \geq g(N_a) + h(A)$
- The f value along a path never decreases
- Non-decreasing f means you’re optimal to every state (not just goals)
Optimality Summary

- **Tree search:**
 - A* optimal if heuristic is admissible (and non-negative)
 - Uniform Cost Search is a special case (h = 0)

- **Graph search:**
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)

- In general, natural admissible heuristics tend to be consistent

- Remember, costs are always positive in search!

Constraint Satisfaction Problems

- **Standard search problems:**
 - State is a "black box": arbitrary data structure
 - Goal test: any function over states
 - Successor function can be anything

- **Constraint satisfaction problems (CSPs):**
 - A special subset of search problems
 - State is defined by variables X, with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

 - Simple example of a formal representation language

 - Allows useful general-purpose algorithms with more power than standard search algorithms

Example: N-Queens

- **Formulation 1:**
 - Variables: Xij
 - Domains: {0, 1}
 - Constraints:
 \[\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\} \]
 \[\forall i, j, k \ (X_{ij}, X_{ki}) \in \{(0, 0), (0, 1), (1, 0)\} \]
 \[\forall i, j, k \ (X_{ij}, X_{i+j+k}) \in \{(0, 0), (0, 1), (1, 0)\} \]
 \[\sum_{i,j} X_{ij} = N \]

- **Formulation 2:**
 - Variables: Qi
 - Domains: \{11, 12, 13, \ldots 21, \ldots NN\}
 - Constraints:
 \[\forall i, j \ \text{non-threatening}(Q_i, Q_j) \]
 \[\forall i, j \ (Q_i, Q_j) \in \{(11, 23), (11, 24), \ldots\} \]

 - ...there's an even better way! What is it?

Example: Map-Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domain: D = \{red, green, blue\}
- Constraints: adjacent regions must have different colors
 - WA \neq NT
 - \((WA, NT) \in \{(red, green), (red, blue), (green, red), \ldots\} \)
- Solutions are assignments satisfying all constraints, e.g.:
 \[\{WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green\} \]

Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Constraint graph: nodes are variables, arcs show constraints

- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!
Example: Cryptarithmetic

- **Variables:**
 - $F T U W R O X_1 X_2 X_3$

- **Domains:**
 - $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

- **Constraints:**
 - \text{alldiff}(F, T, U, W, R, O)
 - $O + O = R + 10 \cdot X_1$
 - \ldots

Example: Sudoku

- **Variables:**
 - Each open square

- **Domains:**
 - $\{1, 2, \ldots, 9\}$

- **Constraints:**
 - 9-way alldiff for each column
 - 9-way alldiff for each row
 - 9-way alldiff for each region

Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra
- An early example of a computation posed as a CSP

- Look at all intersections
- Adjacent intersections impose constraints on each other

Varieties of CSPs

- **Discrete Variables**
 - Finite domains
 - Size d means $O(d^n)$ complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Need a constraint language, e.g., $\text{StartJob}_1 + 5 < \text{StartJob}_2$
 - Linear constraints solvable, nonlinear undecidable

- **Continuous variables**
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods (see cs170 for a bit of this theory)

Varieties of Constraints

- **Varieties of Constraints**

 - **Unary constraints involve a single variable (equiv. to shrinking domains):**
 - $SA \neq \text{green}$

 - **Binary constraints involve pairs of variables:**
 - $SA \neq WA$

 - **Higher-order constraints involve 3 or more variables:**
 - e.g., cryptarithmetic column constraints

- **Preferences (soft constraints):**
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We'll ignore these until we get to Bayes’ nets)

Real-World CSPs

- **Assignment problems:** e.g., who teaches what class
- **Timetabling problems:** e.g., which class is offered when and where?
- **Hardware configuration**
- **Spreadsheets**
- **Transportation scheduling**
- **Factory scheduling**
- **Floorplanning**

- **Many real-world problems involve real-valued variables…**
Standard Search Formulation

- Standard search formulation of CSPs (incremental)
- Let’s start with the straightforward, dumb approach, then fix it
- States are defined by the values assigned so far
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints
- Simplest CSP ever: two bits, constrained to be equal

Search Methods

- What does BFS do?
- What does DFS do?
 - [demo]
- What’s the obvious problem here?
- What’s the slightly-less-obvious problem?

Backtracking Search

- Idea 1: Only consider a single variable at each point:
 - Variable assignments are commutative
 - i.e., [WA = red then NT = green] is same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
 - How many leaves are there?
- Idea 2: Only allow legal assignments at each point
 - i.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to figure out whether a value is ok
- Depth-first search for CSPs with these two improvements is called backtracking search (useless name, really)
 - [animation]
- Backtracking search is the basic uninformed algorithm for CSPs
- Can solve n-queens for n = 25

5 Minute Break

Backtracking Example

function Backtracking-Search(cp) returns solution or failure
 return Recursive-Backtracking([], cp)

function Recursive-Backtracking(assignment, cp) returns solution or failure
 if assignment is complete then return assignment
 for each value in Order-Domain-Values(var, assignment, cp) do
 if value is consistent with assignment given Constraints(var) then
 add [var = value] to assignment
 result = Recursive-Backtracking(assignment, cp)
 if result is failure then return result
 remove [var = value] from assignment
 return failure

What are the choice points?
Improving Backtracking

- General-purpose ideas can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?
 - Can we take advantage of problem structure?

Minimum Remaining Values

- Minimum remaining values (MRV):
 - Choose the variable with the fewest legal values
 - Why min rather than max?
 - Called most constrained variable
 - “Fail-fast” ordering

Degree Heuristic

- Tie-breaker among MRV variables
- Degree heuristic:
 - Choose the variable participating in the most constraints on remaining variables
 - Why most rather than fewest constraints?

Least Constraining Value

- Given a choice of variable:
 - Choose the least constraining value
 - The one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this!
 - Why least rather than most?
 - Combining these heuristics makes 1000 queens feasible

Forward Checking

- Idea: Keep track of remaining legal values for unassigned variables (using immediate constraints)
- Idea: Terminate when any variable has no legal values

Constraint Propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:
- NT and SA cannot both be blue!
- Why didn't we detect this yet?
- Constraint propagation repeatedly enforces constraints (locally)
Arc Consistency

- Simplest form of propagation makes each arc consistent
 - $X \rightarrow Y$ is consistent if for every value x there is some allowed y

- If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- What’s the downside of arc consistency?
- Can be run as a preprocessor or after each assignment

Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has c variables out of n total
- Worst-case solution cost is $O(n/c)(d^c)$, linear in n
 - E.g., $n = 80$, $d = 2$, $c = 20$
 - $2^{20} = 4$ billion years at 10 million nodes/sec
 - $(4)(2^{20}) = 0.4$ seconds at 10 million nodes/sec

Tree-Structured CSPs

- Choose a variable as root, order variables from root to leaves such that every node’s parent precedes it in the ordering
- For $i = n : 2$, apply RemoveInconsistent(Parent(X_i), X_i)
- For $i = 1 : n$, assign X_i consistently with Parent(X_i)
- Runtime: $O(n d^2)$

Theorem: if the constraint graph has no loops, the CSP can be solved in $O(n d^2)$ time!
- Compare to general CSPs, where worst-case time is $O(d^n)$
- This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors’ domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime $O((d^n)(n-c) d^2)$, very fast for small c
Iterative Algorithms for CSPs

- Greedy and local methods typically work with “complete” states, i.e., all variables assigned
- To apply to CSPs:
 - Allow states with unsatisfied constraints
 - Operators reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - Choose value that violates the fewest constraints
 - i.e., hill climb with \(h(n) = \) total number of violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns (\(4^4 = 256 \) states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: \(h(n) = \) number of attacks

Performance of Min-Conflicts

- Given random initial state, can solve \(n \)-queens in almost constant time for arbitrary \(n \) with high probability (e.g., \(n = 10,000,000 \))
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

\[
R = \frac{\text{number of constraints}}{\text{number of variables}}
\]

Summary

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values
 - Backtracking = depth-first search with one legal variable assigned per node
 - Forward checking prevents assignments that guarantee later failure
 - Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
 - The constraint graph representation allows analysis of problem structure
 - Tree-structured CSPs can be solved in linear time
 - Iterative min-conflicts is usually effective in practice

Local Search Methods

- Queue-based algorithms keep fallback options (backtracking)
- Local search: improve what you have until you can’t make it better
- Generally much more efficient (but incomplete)

Types of Problems

- Planning problems:
 - We want a path to a solution (examples?)
 - Usually want an optimal path
 - Incremental formulations
- Identification problems:
 - We actually just want to know what the goal is (examples?)
 - Usually want an optimal goal
 - Complete-state formulations
 - Iterative improvement algorithms
Hill Climbing

- Simple, general idea:
 - Start wherever
 - Always choose the best neighbor
 - If no neighbors have better scores than current, quit

- Why can this be a terrible idea?
 - Complete?
 - Optimal?

- What’s good about it?

Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

  ```
  function SIMULATED-ANNEALING(problem, schedule) returns a solution state
  inputs: problem, a problem
  schedule, a mapping from time to “temperature”
  local variables: current, a node
                  next, a node
                  T, a “temperature” controlling prob. of downward steps
  current = MAKE-NODE(INITIAL-STATE[problem])
  for t = 1 to n do
      T = schedule(t)
      if T = 0 then return current
      next = a randomly selected successor of current
      ΔE ← VALUE[successor] - VALUE[current]
      if ΔE > 0 then current ← next
      else current ← next only with probability e^ΔE
  ```

- Theoretical guarantee:
 - If T decreased slowly enough, will converge to optimal state!

- Is this an interesting guarantee?

- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape, the less likely you are to every make them all in a row
 - People think hard about ridge operators which let you jump around the space in better ways

Beam Search

- Like greedy search, but keep K states at all times:

 - Greedy Search
 - Beam Search

- Variables: beam size, encourage diversity?
- The best choice in MANY practical settings
- Complete? Optimal?
- What criteria to order nodes by?