Announcements

- Project 1 (Search) is due tomorrow
 - Come to office hours if you're stuck
 - Today at 1pm (Nick) and 3pm (John)
 - Tomorrow at 11am (John)
 - Up to 2 slip days (Friday at 11:59pm)
 - Issues: nodes expanded and hashing lists

- Written assignment 1 is due next Tuesday
 - Work in groups, write up alone
 - Printed copies are available after lecture today
 - Due at the beginning of Tuesday lecture

Today

- Backtracking Search Recap
- Structure in CSPs
- Local Search Algorithms

Production Scheduling

- Variables: C_1, C_2, C_3, \ldots
- Values: 4, 5, 6
- Constraints:
 - (C_i, C_{i+1}) in { (4,5), (5,4), (4,6), (6,4) }

Backtracking Search Review

- Pick a variable (MRV, degree)
- Order values (LCV)
- For each value:
 - Instantiate variable
 - Forward checking
 - Arc consistency
 - Backtracking
Limitations of Arc Consistency

- After running arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node's domain has a value which meets that node's unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the k-th node.

- Higher k more expensive to compute
- (You need to know the k=2 algorithm)

Strong K-Consistency

- Strong k-consistency: also k-1, k-2, ... 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
- Why?
 - Choose any assignment to any variable
 - Choose a new variable
 - By 2-consistency, there is a choice consistent with the first
 - Choose a new variable
 - By 3-consistency, there is a choice consistent with the first 2
 - ...
- Lots of middle ground between arc consistency and n-consistency!

Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has c out of n total
 - Worst-case solution cost is \(O((n/c)(d^c)) \), linear in \(n \)
 - E.g., \(n = 80, d = 2, c = 20 \)
 - \(2^{20} = 4 \text{ billion years} \) at 10 million nodes/sec
 - \((4)(2^{20}) = 0.4 \text{ seconds} \) at 10 million nodes/sec

Tree-Structured CSPs

- Tree structured mean no loops in the constraint graph
- Theorem: A tree-structured CSP can be solved in \(O(n d^2) \) time
 - Compare to general CSPs, where worst-case time is \(O(d^n) \)
 - Efficient algorithms for tree-structured problems also appear in probabilistic reasoning, where we have probability distributions over the values of each variable

Example Tree-Structured CSP

<table>
<thead>
<tr>
<th>Variables</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_i) in { 4, 5, 6 }</td>
<td>((C_i, C_{i+1})) in { (4,5), (5,4), (6,4), (4,6) }</td>
</tr>
<tr>
<td>(D_i) in {True, False}</td>
<td>((C_i, D_i)) in { (4,T), (4,F), (5,F), (6,F) }</td>
</tr>
</tbody>
</table>

- \(D_3 = \text{True} \)
Solving a Tree-Structured CSP

- Choose any variable as root
- Order variables from root to leaves such that every node's parent precedes it in the ordering (topological order)

```
C1 -----> C2 -----> C3 -----> C4
D1    D2    D3    D4
```

4 4 4 4 T T
5 5 5 5 F F
6 6 6 6

- Apply unary constraints
- For $i = n : 2$, apply $\text{Remove}_\text{Inconsistent}(\text{Parent}(X_i), X_i)$
- For $i = 1 : n$, assign X_i consistently with $\text{Parent}(X_i)$

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime $O((d^c)(n-c)d^2)$, very fast for small c

Tree-Structured CSPs

- Why does this work?
- Claim: After each node is processed leftward, all nodes to the right can be assigned in any way consistent with their parent.
- Proof: Induction on position

```
C1 -----> C2 -----> C3 -----> C4
D1    D2    D3    D4
```

- Why doesn’t this algorithm work with loops?
- Note: we’ll see this basic idea again with Bayes’ nets

Tree Decompositions

- Create a tree-structured graph of subproblems
- Solve each subproblem to enforce local constraints
- Solve the CSP over subproblem mega-variables using our efficient tree-structured CSP algorithm

Constraint: Every convertible must be two steps after another

```
(4,5,4) (5,4,5) (6,4,5) (4,6,4)
```

Constraint graph:

Iterative Algorithms for CSPs

- Local search methods typically work with “complete” states, i.e., all variables assigned
- To apply to CSPs:
 - Start with some assignment with unsatisfied constraints
 - Operators reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - Choose value that violates the fewest constraints
 - I.e., hill climb with $h(n) = \text{total number of violated constraints}$
Example: 4-Queens

- States: 4 queens in 4 columns ($4^4 = 256$ states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: $h(n) =$ number of attacks

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $n = 10,000,000$)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio $R = \frac{\text{number of constraints}}{\text{number of variables}}$

Summary

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values
 - Backtracking = depth-first search with one legal variable assigned per node
 - Variable ordering and value selection heuristics help significantly
 - Forward checking prevents assignments that guarantee later failure
 - Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
 - Constraint graphs allow for analysis of problem structure
 - Tree-structured CSPs can be solved in linear time
 - Iterative min-conflicts is usually effective in practice

Local Search Methods

- Tree search keeps unexplored alternatives on the fringe (ensures completeness)
- Local search: improve what you have until you can’t make it better
- Generally much faster and more memory efficient (but incomplete)

Types of Search Problems

- Planning problems:
 - We want a path to a solution (examples?)
 - Usually want an optimal path
 - Incremental formulations
- Identification problems:
 - We actually just want to know what the goal is (examples?)
 - Usually want an optimal goal
 - Complete-state formulations
 - Iterative improvement algorithms

Hill Climbing

- Simple, general idea:
 - Start wherever
 - Always choose the best neighbor
 - If no neighbors have better scores than current, quit
- Why can this be a terrible idea?
 - Complete?
 - Optimal?
- What’s good about it?
Simulated Annealing

- **Idea:** Escape local maxima by allowing downhill moves
- But make them rarer as time goes on

```plaintext
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
  inputs: problem, a problem
           schedule, a mapping from time to "temperature"
  local variables: current, a node
                  next, a node
                  T, a "temperature" controlling prob. of downhill steps
  current <- MAKE-NODE(INITIAL-STATE[problem])
  for t <- 1 to ∞ do
    T <- schedule(t)
    if T = 0 then return current
    next <- a randomly selected successor of current
    ΔE <- VALUE(next) − VALUE(current)
    if ΔE > 0 then current <- next
    else current <- next only with probability e^ΔE/T
```

- **Theoretical guarantee:**
 - If T decreased slowly enough, simulated annealing will converge to the highest value (lowest cost) state!

- **How useful is this guarantee?**

- **Sounds like magic, but reality is reality:**
 - The more downhill steps you need to escape, the less likely you are to every make them all in a row
 - People think hard about *ridge operators* which let you jump around the space in better ways