Announcements

- **Written Assignment 1:**
 - Due Tuesday in lecture!
 - No late days for written assignments
 - Printed copies will be here after class
- **Countdown to math:**
 - Markov decision processes are 3 lectures away
- **Project 2:**
 - Posted tonight; due Wednesday, 2/18
 - Material from today and next Tuesday
- **Midterm on Thursday, 3/19, at 6pm in 10 Evans**
Game Playing

- Many different kinds of games!

- Axes:
 - Deterministic or stochastic?
 - One, two or more players?
 - Perfect information (can you see the state)?

- Want algorithms for calculating a strategy (policy) which recommends a move in each state

Example: Peg Game

Jump each tee and remove it:
- Leave only one -- you're genius
- Leave two and you're purty smart
- Leave three and you're just plain dumb
- Leave four or mor'n you're an EG-NO-RA-MOOSE

Looks like a search problem:
- Has a start state, goal test, successor function
- But the goal cost is not the sum of step costs!
- Are all of our search algorithms useless here?

Instructions from Cracker Barrel Old Country Store
Deterministic Single-Player

- Deterministic, single player, perfect information games:
 - Start state, successor function, terminal test, utility of terminals

- Max search:
 - Each node stores a value: the best outcome it can reach
 - This is the maximal value of its children (recursive definition)
 - No path sums; utilities at end

- After search, can pick move that leads to the best outcome

Properties of Max Search

- Terminology: terminal states, node values, policies
- Without bounds, need to search the entire tree to find the max
- Computes successively tighter lower bounds on node values
- With a known upper bound on utility, can stop when the global max is attained
- Nodes are max nodes because one agent is making decisions
- Caching max values can speed up computation
Uses of a Max Tree

- Can select a sequence of moves that maximizes utility
- Can recover optimally from bad moves
- Can compute values for certain scenarios easily

Adversarial Search

[DEMO: mystery pacman]
Deterministic Two-Player

- Deterministic, zero-sum games:
 - tic-tac-toe, chess, checkers
 - One player maximizes result
 - The other minimizes result
- Minimax search:
 - A state-space search tree
 - Players alternate
 - Each layer, or ply, consists of a round of moves
 - Choose move to position with highest minimax value: best achievable utility against a rational adversary

Tic-tac-toe Game Tree
Minimax Example

Minimax Search

function Max-Value(state) returns a utility value
 if Terminal-Test(state) then return Utility(state)
 \(v \leftarrow -\infty \)
 for \(a, s \) in Successors(state) do \(v \leftarrow \max(v, Min-Value(s)) \)
 return \(v \)

function Min-Value(state) returns a utility value
 if Terminal-Test(state) then return Utility(state)
 \(v \leftarrow \infty \)
 for \(a, s \) in Successors(state) do \(v \leftarrow \min(v, Max-Value(s)) \)
 return \(v \)
Minimax Properties

- Optimal against a perfect player. Otherwise?
- Time complexity?
 - $O(b^m)$
- Space complexity?
 - $O(bm)$
- For chess, $b \approx 35$, $m \approx 100$
 - Exact solution is completely infeasible
 - Lots of approximations and pruning

Resource Limits

- Cannot search to leaves
- Depth-limited search
 - Instead, search a limited depth of tree
 - Replace terminal utilities with an eval function for non-terminal positions
- Guarantee of optimal play is gone
- More plies makes a BIG difference
 - [DEMO: limitedDepth]
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - α-β reaches about depth 8 – decent chess program
 - Deep Blue sometimes reached depth 40+
Evaluation Functions

- Function which scores non-terminals

- Ideal function: returns the utility of the position
- In practice: typically weighted linear sum of features:

\[
\text{Eval}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)
\]

- e.g. \(f_1(s) = (\text{num white queens} - \text{num black queens}) \), etc.

Evaluation for Pacman

[DEMO: thrashing, smart ghosts]

\[
\text{Eval}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)_{16}
\]
Why Pacman Starves

- He knows his score will go up by eating the dot now
- He knows his score will go up just as much by eating the dot later on
- There are no point-scoring opportunities after eating the dot
- Therefore, waiting seems just as good as eating

Iterative Deepening

Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of length 1 or less. (DFS gives up on any path of length 2)
2. If “1” failed, do a DFS which only searches paths of length 2 or less.
3. If “2” failed, do a DFS which only searches paths of length 3 or less.
 …and so on.

This works for single-agent search as well!

Why do we want to do this for multiplayer games?
α-β Pruning Example

- General configuration
 - α is the best value that MAX can get at any choice point along the current path
 - If n becomes worse than α, MAX will avoid it, so can stop considering n's other children
 - Define β similarly for MIN

α-β Pruning

- General configuration
 - α is the best value that MAX can get at any choice point along the current path
 - If n becomes worse than α, MAX will avoid it, so can stop considering n's other children
 - Define β similarly for MIN
α-β Pruning Pseudocode

function Max-Value(state) returns a utility value
 if Terminal-Test(state) then return Utility(state)
 \(v \leftarrow -\infty \)
 for \(a, s \) in Successors(state) do \(v \leftarrow \max(v, \text{Min-Value}(s)) \)
 return \(v \)

function Max-Value(state, \(\alpha, \beta \)) returns a utility value
 inputs: state, current state in game
 \(\alpha \), the value of the best alternative for \(\text{Max} \) along the path to state
 \(\beta \), the value of the best alternative for \(\text{Min} \) along the path to state
 if Terminal-Test(state) then return Utility(state)
 \(v \leftarrow -\infty \)
 for \(a, s \) in Successors(state) do
 \(v \leftarrow \max(v, \text{Min-Value}(s, \alpha, \beta)) \)
 if \(v \geq \beta \) then return \(v \)
 \(\alpha \leftarrow \max(\alpha, v) \)
 return \(v \)

α-β Pruning Properties

- This pruning has **no effect** on final result at the root
- Values of intermediate nodes might be wrong
- Good move ordering improves effectiveness of pruning
- With “perfect ordering”:
 - Time complexity drops to \(O(b^{m/2}) \)
 - Doubles solvable depth
 - Full search of, e.g. chess, is still hopeless!
- This is a simple example of **metareasoning**
More Metareasoning Ideas

- Forward pruning – prune a node immediately without recursive evaluation
- Singular extensions – explore only one action that is clearly better than others. Can alleviate horizon effects
- Cutoff test – a decision function about when to apply evaluation
- Quiescence search – expand the tree until positions are reached that are quiescent (i.e., not volatile)

Game Playing State-of-the-Art

- **Checkers**: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions. Checkers is now solved!

- **Chess**: Deep Blue defeated human world champion Gary Kasparov in a six-game match in 1997. Deep Blue examined 200 million positions per second, used very sophisticated evaluation and undisclosed methods for extending some lines of search up to 40 ply.

- **Othello**: human champions refuse to compete against computers, which are too good.

- **Go**: human champions refuse to compete against computers, which are too bad. In go, b > 300, so most programs use pattern knowledge bases to suggest plausible moves.

- **Pacman**: unknown
GamesCrafters

http://gamescrafters.berkeley.edu/