# gridworld.py # ------------ # Licensing Information: Please do not distribute or publish solutions to this # project. You are free to use and extend these projects for educational # purposes. The Pacman AI projects were developed at UC Berkeley, primarily by # John DeNero (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). # For more info, see http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html import random import sys import mdp import environment import util import optparse class Gridworld(mdp.MarkovDecisionProcess): """ Gridworld """ def __init__(self, grid): # layout if type(grid) == type([]): grid = makeGrid(grid) self.grid = grid # parameters self.livingReward = 0.0 self.noise = 0.2 def setLivingReward(self, reward): """ The (negative) reward for exiting "normal" states. Note that in the R+N text, this reward is on entering a state and therefore is not clearly part of the state's future rewards. """ self.livingReward = reward def setNoise(self, noise): """ The probability of moving in an unintended direction. """ self.noise = noise def getPossibleActions(self, state): """ Returns list of valid actions for 'state'. Note that you can request moves into walls and that "exit" states transition to the terminal state under the special action "done". """ if state == self.grid.terminalState: return () x,y = state if type(self.grid[x][y]) == int: return ('exit',) return ('north','west','south','east') def getStates(self): """ Return list of all states. """ # The true terminal state. states = [self.grid.terminalState] for x in range(self.grid.width): for y in range(self.grid.height): if self.grid[x][y] != '#': state = (x,y) states.append(state) return states def getReward(self, state, action, nextState): """ Get reward for state, action, nextState transition. Note that the reward depends only on the state being departed (as in the R+N book examples, which more or less use this convention). """ if state == self.grid.terminalState: return 0.0 x, y = state cell = self.grid[x][y] if type(cell) == int or type(cell) == float: return cell return self.livingReward def getStartState(self): for x in range(self.grid.width): for y in range(self.grid.height): if self.grid[x][y] == 'S': return (x, y) raise 'Grid has no start state' def isTerminal(self, state): """ Only the TERMINAL_STATE state is *actually* a terminal state. The other "exit" states are technically non-terminals with a single action "exit" which leads to the true terminal state. This convention is to make the grids line up with the examples in the R+N textbook. """ return state == self.grid.terminalState def getTransitionStatesAndProbs(self, state, action): """ Returns list of (nextState, prob) pairs representing the states reachable from 'state' by taking 'action' along with their transition probabilities. """ if action not in self.getPossibleActions(state): raise "Illegal action!" if self.isTerminal(state): return [] x, y = state if type(self.grid[x][y]) == int or type(self.grid[x][y]) == float: termState = self.grid.terminalState return [(termState, 1.0)] successors = [] northState = (self.__isAllowed(y+1,x) and (x,y+1)) or state westState = (self.__isAllowed(y,x-1) and (x-1,y)) or state southState = (self.__isAllowed(y-1,x) and (x,y-1)) or state eastState = (self.__isAllowed(y,x+1) and (x+1,y)) or state if action == 'north' or action == 'south': if action == 'north': successors.append((northState,1-self.noise)) else: successors.append((southState,1-self.noise)) massLeft = self.noise successors.append((westState,massLeft/2.0)) successors.append((eastState,massLeft/2.0)) if action == 'west' or action == 'east': if action == 'west': successors.append((westState,1-self.noise)) else: successors.append((eastState,1-self.noise)) massLeft = self.noise successors.append((northState,massLeft/2.0)) successors.append((southState,massLeft/2.0)) successors = self.__aggregate(successors) return successors def __aggregate(self, statesAndProbs): counter = util.Counter() for state, prob in statesAndProbs: counter[state] += prob newStatesAndProbs = [] for state, prob in counter.items(): newStatesAndProbs.append((state, prob)) return newStatesAndProbs def __isAllowed(self, y, x): if y < 0 or y >= self.grid.height: return False if x < 0 or x >= self.grid.width: return False return self.grid[x][y] != '#' class GridworldEnvironment(environment.Environment): def __init__(self, gridWorld): self.gridWorld = gridWorld self.reset() def getCurrentState(self): return self.state def getPossibleActions(self, state): return self.gridWorld.getPossibleActions(state) def doAction(self, action): successors = self.gridWorld.getTransitionStatesAndProbs(self.state, action) sum = 0.0 rand = random.random() state = self.getCurrentState() for nextState, prob in successors: sum += prob if sum > 1.0: raise 'Total transition probability more than one; sample failure.' if rand < sum: reward = self.gridWorld.getReward(state, action, nextState) self.state = nextState return (nextState, reward) raise 'Total transition probability less than one; sample failure.' def reset(self): self.state = self.gridWorld.getStartState() class Grid: """ A 2-dimensional array of immutables backed by a list of lists. Data is accessed via grid[x][y] where (x,y) are cartesian coordinates with x horizontal, y vertical and the origin (0,0) in the bottom left corner. The __str__ method constructs an output that is oriented appropriately. """ def __init__(self, width, height, initialValue=' '): self.width = width self.height = height self.data = [[initialValue for y in range(height)] for x in range(width)] self.terminalState = 'TERMINAL_STATE' def __getitem__(self, i): return self.data[i] def __setitem__(self, key, item): self.data[key] = item def __eq__(self, other): if other == None: return False return self.data == other.data def __hash__(self): return hash(self.data) def copy(self): g = Grid(self.width, self.height) g.data = [x[:] for x in self.data] return g def deepCopy(self): return self.copy() def shallowCopy(self): g = Grid(self.width, self.height) g.data = self.data return g def _getLegacyText(self): t = [[self.data[x][y] for x in range(self.width)] for y in range(self.height)] t.reverse() return t def __str__(self): return str(self._getLegacyText()) def makeGrid(gridString): width, height = len(gridString[0]), len(gridString) grid = Grid(width, height) for ybar, line in enumerate(gridString): y = height - ybar - 1 for x, el in enumerate(line): grid[x][y] = el return grid def getCliffGrid(): grid = [[' ',' ',' ',' ',' '], ['S',' ',' ',' ',10], [-100,-100, -100, -100, -100]] return Gridworld(makeGrid(grid)) def getCliffGrid2(): grid = [[' ',' ',' ',' ',' '], [8,'S',' ',' ',10], [-100,-100, -100, -100, -100]] return Gridworld(grid) def getDiscountGrid(): grid = [[' ',' ',' ',' ',' '], [' ','#',' ',' ',' '], [' ','#', 1,'#', 10], ['S',' ',' ',' ',' '], [-10,-10, -10, -10, -10]] return Gridworld(grid) def getBridgeGrid(): grid = [[ '#',-100, -100, -100, -100, -100, '#'], [ 1, 'S', ' ', ' ', ' ', ' ', 10], [ '#',-100, -100, -100, -100, -100, '#']] return Gridworld(grid) def getBookGrid(): grid = [[' ',' ',' ',+1], [' ','#',' ',-1], ['S',' ',' ',' ']] return Gridworld(grid) def getMazeGrid(): grid = [[' ',' ',' ',+1], ['#','#',' ','#'], [' ','#',' ',' '], [' ','#','#',' '], ['S',' ',' ',' ']] return Gridworld(grid) def getUserAction(state, actionFunction): """ Get an action from the user (rather than the agent). Used for debugging and lecture demos. """ import graphicsUtils action = None while True: keys = graphicsUtils.wait_for_keys() if 'Up' in keys: action = 'north' if 'Down' in keys: action = 'south' if 'Left' in keys: action = 'west' if 'Right' in keys: action = 'east' if 'q' in keys: sys.exit(0) if action == None: continue break actions = actionFunction(state) if action not in actions: action = actions[0] return action def printString(x): print x def runEpisode(agent, environment, discount, decision, display, message, pause, episode): returns = 0 totalDiscount = 1.0 environment.reset() if 'startEpisode' in dir(agent): agent.startEpisode() message("BEGINNING EPISODE: "+str(episode)+"\n") while True: # DISPLAY CURRENT STATE state = environment.getCurrentState() display(state) pause() # END IF IN A TERMINAL STATE actions = environment.getPossibleActions(state) if len(actions) == 0: message("EPISODE "+str(episode)+" COMPLETE: RETURN WAS "+str(returns)+"\n") return returns # GET ACTION (USUALLY FROM AGENT) action = decision(state) if action == None: raise 'Error: Agent returned None action' # EXECUTE ACTION nextState, reward = environment.doAction(action) message("Started in state: "+str(state)+ "\nTook action: "+str(action)+ "\nEnded in state: "+str(nextState)+ "\nGot reward: "+str(reward)+"\n") # UPDATE LEARNER if 'observeTransition' in dir(agent): agent.observeTransition(state, action, nextState, reward) returns += reward * totalDiscount totalDiscount *= discount if 'stopEpisode' in dir(agent): agent.stopEpisode() def parseOptions(): optParser = optparse.OptionParser() optParser.add_option('-d', '--discount',action='store', type='float',dest='discount',default=0.9, help='Discount on future (default %default)') optParser.add_option('-r', '--livingReward',action='store', type='float',dest='livingReward',default=0.0, metavar="R", help='Reward for living for a time step (default %default)') optParser.add_option('-n', '--noise',action='store', type='float',dest='noise',default=0.2, metavar="P", help='How often action results in ' + 'unintended direction (default %default)' ) optParser.add_option('-e', '--epsilon',action='store', type='float',dest='epsilon',default=0.3, metavar="E", help='Chance of taking a random action in q-learning (default %default)') optParser.add_option('-l', '--learningRate',action='store', type='float',dest='learningRate',default=0.5, metavar="P", help='TD learning rate (default %default)' ) optParser.add_option('-i', '--iterations',action='store', type='int',dest='iters',default=10, metavar="K", help='Number of rounds of value iteration (default %default)') optParser.add_option('-k', '--episodes',action='store', type='int',dest='episodes',default=1, metavar="K", help='Number of epsiodes of the MDP to run (default %default)') optParser.add_option('-g', '--grid',action='store', metavar="G", type='string',dest='grid',default="BookGrid", help='Grid to use (case sensitive; options are BookGrid, BridgeGrid, CliffGrid, MazeGrid, default %default)' ) optParser.add_option('-w', '--windowSize', metavar="X", type='int',dest='gridSize',default=150, help='Request a window width of X pixels *per grid cell* (default %default)') optParser.add_option('-a', '--agent',action='store', metavar="A", type='string',dest='agent',default="random", help='Agent type (options are \'random\', \'value\' and \'q\', default %default)') optParser.add_option('-t', '--text',action='store_true', dest='textDisplay',default=False, help='Use text-only ASCII display') optParser.add_option('-p', '--pause',action='store_true', dest='pause',default=False, help='Pause GUI after each time step when running the MDP') optParser.add_option('-q', '--quiet',action='store_true', dest='quiet',default=False, help='Skip display of any learning episodes') optParser.add_option('-s', '--speed',action='store', metavar="S", type=float, dest='speed',default=1.0, help='Speed of animation, S > 1.0 is faster, 0.0 < S < 1.0 is slower (default %default)') optParser.add_option('-m', '--manual',action='store_true', dest='manual',default=False, help='Manually control agent') optParser.add_option('-v', '--valueSteps',action='store_true' ,default=False, help='Display each step of value iteration') opts, args = optParser.parse_args() if opts.manual and opts.agent != 'q': print '## Disabling Agents in Manual Mode (-m) ##' opts.agent = None # MANAGE CONFLICTS if opts.textDisplay or opts.quiet: # if opts.quiet: opts.pause = False # opts.manual = False if opts.manual: opts.pause = True return opts if __name__ == '__main__': opts = parseOptions() ########################### # GET THE GRIDWORLD ########################### import gridworld mdpFunction = getattr(gridworld, "get"+opts.grid) mdp = mdpFunction() mdp.setLivingReward(opts.livingReward) mdp.setNoise(opts.noise) env = gridworld.GridworldEnvironment(mdp) ########################### # GET THE DISPLAY ADAPTER ########################### import textGridworldDisplay display = textGridworldDisplay.TextGridworldDisplay(mdp) if not opts.textDisplay: import graphicsGridworldDisplay display = graphicsGridworldDisplay.GraphicsGridworldDisplay(mdp, opts.gridSize, opts.speed) display.start() ########################### # GET THE AGENT ########################### import valueIterationAgents, qlearningAgents a = None if opts.agent == 'value': a = valueIterationAgents.ValueIterationAgent(mdp, opts.discount, opts.iters) elif opts.agent == 'q': #env.getPossibleActions, opts.discount, opts.learningRate, opts.epsilon #simulationFn = lambda agent, state: simulation.GridworldSimulation(agent,state,mdp) gridWorldEnv = GridworldEnvironment(mdp) actionFn = lambda state: mdp.getPossibleActions(state) qLearnOpts = {'gamma': opts.discount, 'alpha': opts.learningRate, 'epsilon': opts.epsilon, 'actionFn': actionFn} a = qlearningAgents.QLearningAgent(**qLearnOpts) elif opts.agent == 'random': # # No reason to use the random agent without episodes if opts.episodes == 0: opts.episodes = 10 class RandomAgent: def getAction(self, state): return random.choice(mdp.getPossibleActions(state)) def getValue(self, state): return 0.0 def getQValue(self, state, action): return 0.0 def getPolicy(self, state): "NOTE: 'random' is a special policy value; don't use it in your code." return 'random' def update(self, state, action, nextState, reward): pass a = RandomAgent() else: if not opts.manual: raise 'Unknown agent type: '+opts.agent ########################### # RUN EPISODES ########################### # DISPLAY Q/V VALUES BEFORE SIMULATION OF EPISODES if not opts.manual and opts.agent == 'value': if opts.valueSteps: for i in range(opts.iters): tempAgent = valueIterationAgents.ValueIterationAgent(mdp, opts.discount, i) display.displayValues(tempAgent, message = "VALUES AFTER "+str(i)+" ITERATIONS") display.pause() display.displayValues(a, message = "VALUES AFTER "+str(opts.iters)+" ITERATIONS") display.pause() display.displayQValues(a, message = "Q-VALUES AFTER "+str(opts.iters)+" ITERATIONS") display.pause() # FIGURE OUT WHAT TO DISPLAY EACH TIME STEP (IF ANYTHING) displayCallback = lambda x: None if not opts.quiet: if opts.manual and opts.agent == None: displayCallback = lambda state: display.displayNullValues(state) else: if opts.agent == 'random': displayCallback = lambda state: display.displayValues(a, state, "CURRENT VALUES") if opts.agent == 'value': displayCallback = lambda state: display.displayValues(a, state, "CURRENT VALUES") if opts.agent == 'q': displayCallback = lambda state: display.displayQValues(a, state, "CURRENT Q-VALUES") messageCallback = lambda x: printString(x) if opts.quiet: messageCallback = lambda x: None # FIGURE OUT WHETHER TO WAIT FOR A KEY PRESS AFTER EACH TIME STEP pauseCallback = lambda : None if opts.pause: pauseCallback = lambda : display.pause() # FIGURE OUT WHETHER THE USER WANTS MANUAL CONTROL (FOR DEBUGGING AND DEMOS) if opts.manual: decisionCallback = lambda state : getUserAction(state, mdp.getPossibleActions) else: decisionCallback = a.getAction # RUN EPISODES if opts.episodes > 0: print print "RUNNING", opts.episodes, "EPISODES" print returns = 0 for episode in range(1, opts.episodes+1): returns += runEpisode(a, env, opts.discount, decisionCallback, displayCallback, messageCallback, pauseCallback, episode) if opts.episodes > 0: print print "AVERAGE RETURNS FROM START STATE: "+str((returns+0.0) / opts.episodes) print print # DISPLAY POST-LEARNING VALUES / Q-VALUES if opts.agent == 'q' and not opts.manual: display.displayQValues(a, message = "Q-VALUES AFTER "+str(opts.episodes)+" EPISODES") display.pause() display.displayValues(a, message = "VALUES AFTER "+str(opts.episodes)+" EPISODES") display.pause()