Announcements

- Section
 - We’ll be using some software to play with Bayes nets: Bring your laptop!
 - Download necessary files (links also in the handout):
 - http://www-inst.eecs.berkeley.edu/~cs188/sp11/bayes/bayes.jar
 - http://www-inst.eecs.berkeley.edu/~cs188/sp11/bayes/network.xml

- Assignments
 - P4 and contest going out Monday

Outline

- Bayes net refresher:
 - Representation
 - Exact Inference
 - Variable elimination
 - Approximate inference through sampling

Bayes’ Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents’ values
 - CPT: conditional probability table

Probabilities in BNs

- For all joint distributions, we have (chain rule):
 \[P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i | x_1, \ldots, x_{i-1}) \]

- Bayes’ nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:
 \[P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(X_i)) \]

 - This lets us reconstruct any entry of the full joint
 - Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

Inference by Enumeration

- Given unlimited time, inference in BNs is easy
- Recipe:
 - State the marginal probabilities you need
 - Figure out ALL the atomic probabilities you need
 - Calculate and combine them

 - Building the full joint table takes time and space exponential in the number of variables

A Bayes net = Topology (graph) + Local Conditional Probabilities
General Variable Elimination

- **Query**: \(P(Q|E_1 = e_1, \ldots, E_k = e_k) \)

- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
 - While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable \(H \)
 - Join all factors mentioning \(H \)
 - Eliminate (sum out) \(H \)
 - Join all remaining factors and normalize

- Complexity is exponential in the number of variables appearing in the factors—can depend on ordering but even best ordering is often impractical

- Worst case is bad: we can encode 3-SAT with a Bayes net (NP-complete)

Approximate Inference

- Simulation has a name: sampling (e.g. predicting the weather, basketball games...)

- Basic idea:
 - Draw \(N \) samples from a sampling distribution \(S \)
 - Compute an approximate posterior probability
 - Show this converges to the true probability \(P \)

- Why sample?
 - Learning: get samples from a distribution you don’t know
 - Inference: getting a sample is faster than computing the right answer (e.g. with variable elimination)

Sampling

- **How do you sample?**
 - Simplest way is to use a random number generator to get a continuous value uniformly distributed between 0 and 1 (e.g. `random()` in Python)
 - Assign each value in the domain of your random variable a sub-interval of \([0,1]\) with a size equal to its probability
 - The sub-intervals cannot overlap

Sampling Example

- Each value in the domain of \(W \) has a sub-interval of \([0,1]\) with a size equal to its probability

\[
P(W) \begin{cases} u \text{ is a uniform random value in } [0,1] \\
 \text{if } 0.0 \leq u < 0.6, w = \text{sun} \\
 \text{if } 0.6 \leq u < 0.7, w = \text{rain} \\
 \text{if } 0.7 \leq u < 1.0, w = \text{fog}
\end{cases}
\]

- e.g. if `random()` returns \(u = 0.83 \), then our sample is \(w = \text{fog} \)

Prior Sampling

- This process generates samples with probability:

\[
SPS(x_1 \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{Parents}(X_i)) = P(x_1 \ldots x_n)
\]

- i.e. the BN’s joint probability

- Let the number of samples of an event be \(N_{PS}(x_1 \ldots x_n) \)

- Then \(\lim_{N \to \infty} P(x_1, \ldots, x_n) = \lim_{N \to \infty} \frac{N_{PS}(x_1, \ldots, x_n)}{N} = \frac{SPS(x_1 \ldots x_n)}{N} = P(x_1 \ldots x_n) \)

- i.e., the sampling procedure is consistent
Example

- We’ll get a bunch of samples from the BN:
 - +c, -s, +r, +w
 - +c, +s, +r, +w
 - -c, +s, +r, -w
 - +c, -s, +r, +w
 - -c, -s, -r, +w
 - -c, -s, -r, -w

- If we want to know $P(W)$
 - We have counts $+w:4$, $-w:1$
 - Normalize to get $P(W) = +w:0.8$, $-w:0.2$
 - This will get closer to the true distribution with more samples
 - Can estimate anything else, too
 - What about $P(C|+w)$?
 - $P(C|+r,+w)$?
 - $P(C|-r,-w)$?
 - Fast: can use fewer samples if less time (what’s the drawback?)

Rejection Sampling

- Let’s say we want $P(C)$
 - No point keeping all samples around
 - Just tally counts of C as we go
- Let’s say we want $P(C|+s)$
 - Same thing: tally C outcomes, but ignore (reject) samples which don’t have $S=+s$
 - This is called rejection sampling
 - It is also consistent for conditional probabilities (i.e., correct in the limit)

Likelihood Weighting

- Problem with rejection sampling:
 - If evidence is unlikely, you reject a lot of samples
 - You don’t exploit your evidence as you sample
 - Consider $P(B|+a)$

- Idea: fix evidence variables and sample the rest

- Problem: sample distribution not consistent!
- Solution: weight by probability of evidence given parents

- Sampling distribution if z sampled and e fixed evidence
 $$S_{W,z}(z,e) = \prod_{i=1}^{m} P(z_i|\text{Parents}(z_i))$$

- Now, samples have weights
 $$w(x,e) = \prod_{i=1}^{m} P(c_i|\text{Parents}(c_i))$$

- Together, weighted sampling distribution is consistent
 $$S_{WS}(z,e) \cdot w(z,e) = \prod_{i=1}^{m} P(z_i|\text{Parents}(z_i)) \prod_{i=1}^{m} P(c_i|\text{Parents}(c_i)) = P(x,e)$$
Gibbs Sampling

- **Idea**: Instead of sampling from scratch, create samples that are each like the last one.
- **Procedure**: Resample one variable at a time, conditioned on all the rest, but keep evidence fixed.
- **Properties**: Now samples are not independent (in fact they're nearly identical), but sample averages are still consistent estimators!

What's the point: Both upstream and downstream variables condition on evidence.

Gibbs Sampling Example

- Want to sample from $P(R | +s, -c, -w)$
 - Shorthand for $P(R | S=+s, C=-c, W=-w)$

$$P(R | +s, -c, -w) = \frac{P(R, +s, -c, -w)}{P(+s, -c, -w)}$$

$$= \frac{\sum_r P(R=r) P(+s) P(-c) P(-w)}{\sum_r P(R=r) P(+s) P(-c) P(-w)}$$

$$= \frac{P(R=+r) P(+s) P(-c) P(-w)}{P(+s) P(-c) P(-w)}$$

Many things cancel out -- just a join on R!

Further Reading*

- Gibbs sampling is a special case of more general methods called Markov chain Monte Carlo (MCMC) methods
 - Metropolis-Hastings is one of the more famous MCMC methods (in fact, Gibbs sampling is a special case of Metropolis-Hastings)
- You may read about Monte Carlo methods -- they're just sampling